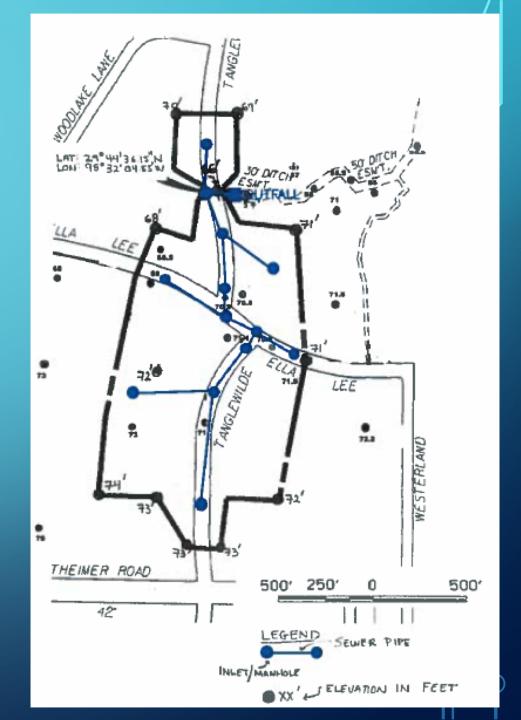
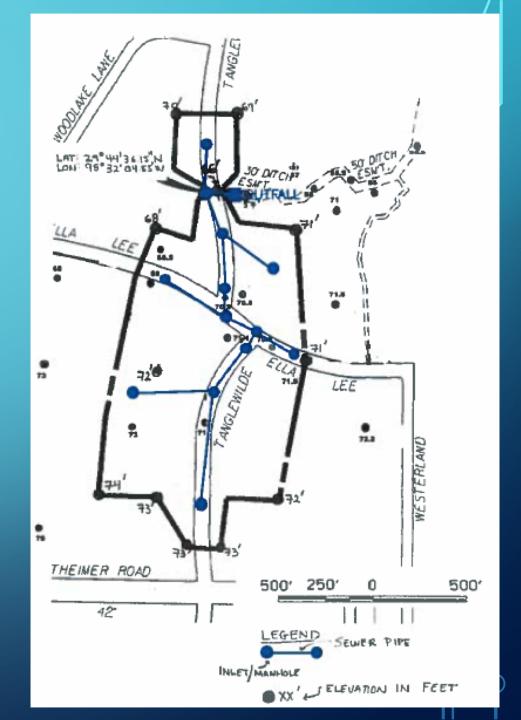
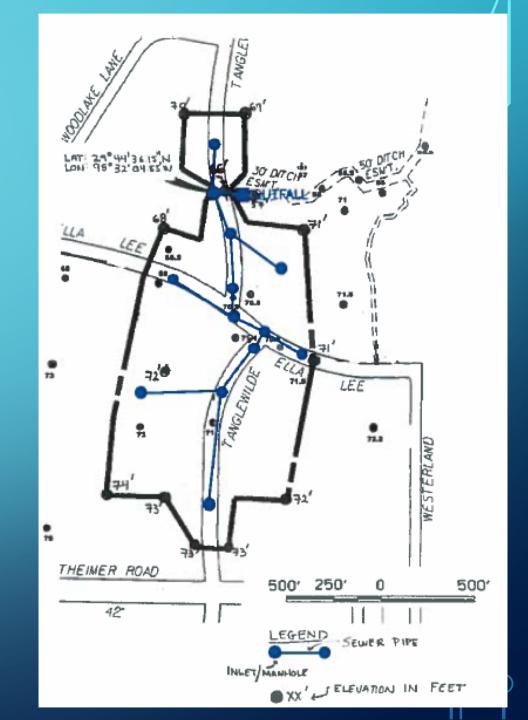

CE 3372 WATER SYSTEMS DESIGN LESSON 19: STORM SEWER DESIGN EXAMPLE (TANGLEWILDE STORM SEWER)


DESIGN STORM SEWER FOR TANGLEWILDE

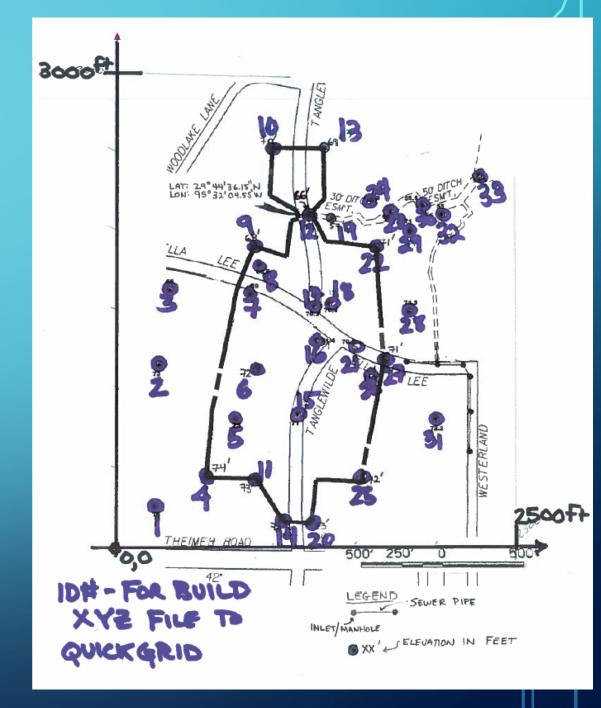
- Method: Rational Equation Design Method to make initial design for subsequent hydraulics analysis
- Identical study area as ES-13


PREPARATION STEPS

- Apply (make) topographic map principles to identify drainage pattern(s)
- Identify the individual drainage areas based on the topographic map and sewer system layout.
- Determine the area of each contributing area, in acres. (ENGAUGE, PLANIMETER, etc)
- Determine the rational runoff coefficient for each area (TABLE LOOKUP)

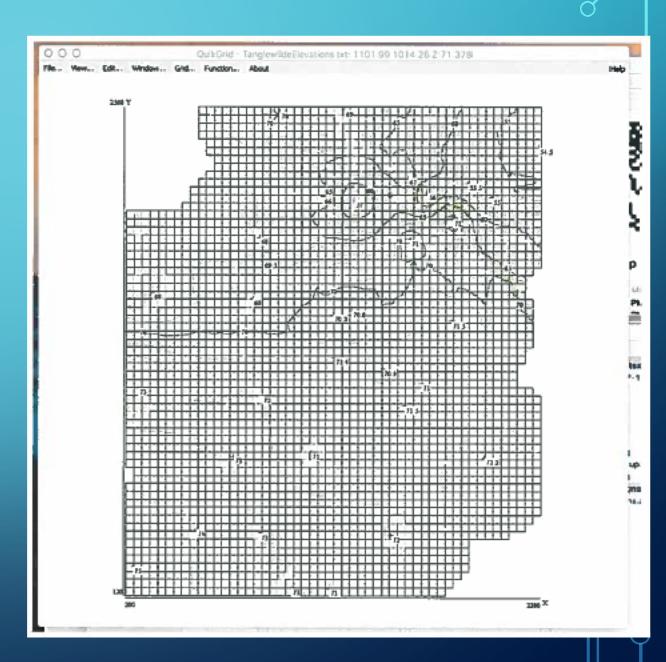

PREPARATION STEPS

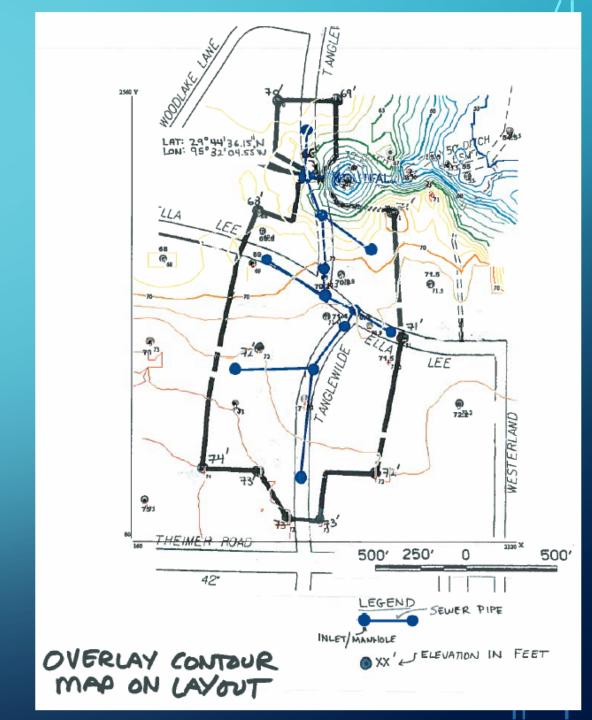
- Determine inlet time for surface portion of drainage system.
- Determine rainfall intensity equation for Harris County.



ANALYSIS STEPS

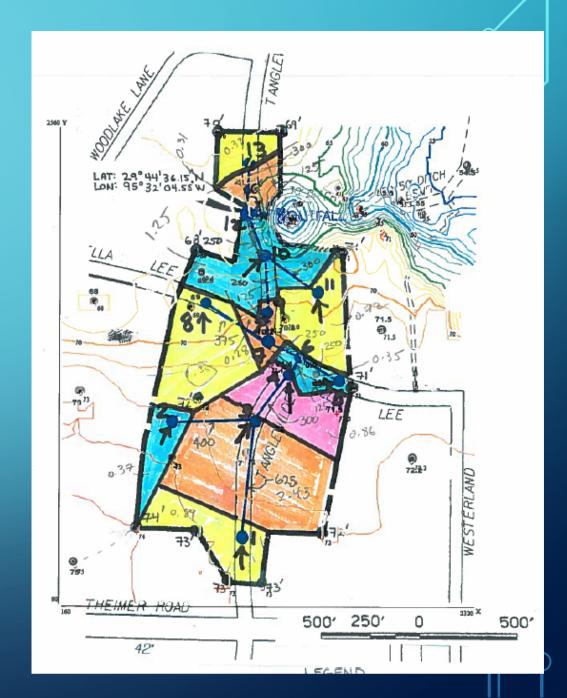
- Apply the intensity equation to the various surface drainage areas, and the accumulating area to size the conduits.
- Check invert elevations to fit into the useable vertical drop for the location
- Size the inlets using appropriate inlet hydraulics equations.


• Locate the elevations and construct an XY coordinate system.

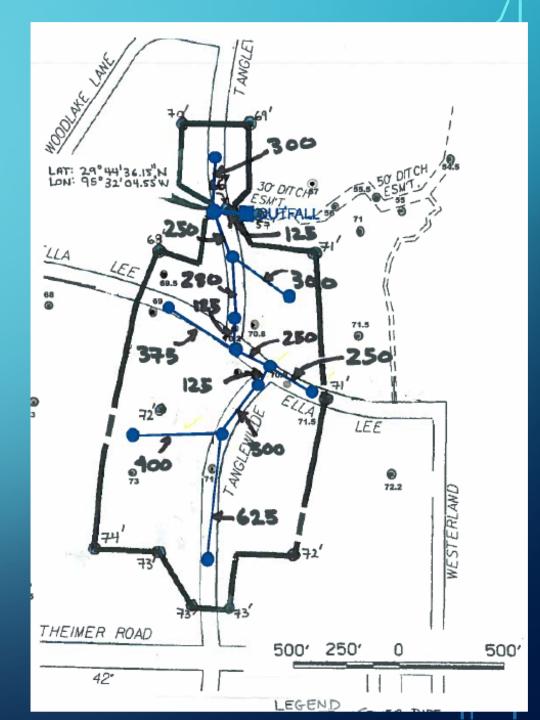

 Use the XY-coordinate system and build an XYZ input file for topographic rendering.

ID X (FEET) Y (FEET) Z (FEET) 1) Us 1 237.484279 263.09382 75 2) Lo 2 260.879376 1158.93885 73 3) Lo 3 332.144775 1633.90828 68 4) Lo 4 554.122697 448.65323 74 5) Us	HOD(S) se drawing and impose axes seate X1,Y1 seate X2,Y1 seate X1, Y2 se G3DATA to capture x,y each point anual enter z for each point based on collect order
ID X (FEET) Y (FEET) Z (FEET) 1) Us 1 237.484279 263.09382 75 2) Lo 2 260.879376 1158.93885 73 3) Lo 3 332.144775 1633.90828 68 4) Lo 4 554.122697 448.65323 74 5) Us 5 737.728288 815.072914 73 6) Ma 6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	se drawing and impose axes cate X1,Y1 cate X2,Y1 cate X1, Y2 se G3DATA to capture x,y each point
1 237.484279 263.09382 75 2) Lo 2 260.879376 1158.93885 73 3) Lo 3 332.144775 1633.90828 68 4) Lo 4 554.122697 448.65323 74 5) Us 5 737.728288 815.072914 73 6) Ma 6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	cate X1,Y1 cate X2,Y1 cate X1, Y2 se G3DATA to capture x,y each point
2 260.879376 1158.93885 73 3) Lo 3 332.144775 1633.90828 68 4) Lo 4 554.122697 448.65323 74 5) Us 5 737.728288 815.072914 73 6) Ma 6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	cate X2,Y1 cate X1, Y2 se G3DATA to capture x,y each point
3 332.144775 1633.90828 68 4) Lo 4 554.122697 448.65323 74 5) Us 5 737.728288 815.072914 73 6) Ma 6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	se G3DATA to capture x,y each point
4 554.122697 448.65323 74 5) Us 5 737.728288 815.072914 73 6) Ms 6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	se G3DATA to capture x,y each point
5 737.728288 815.072914 73 6) Mai 6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
6 880.998109 1119.57212 72 7 832.812956 1602.41018 69 8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
8 882.668563 1790.82685 69.5 9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
9 866.834237 1907.0222 68 10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
10 967.813595 2534.28453 70 11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
11 871.797496 430.252877 73 12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
12 1183.38082 2110.654 66 13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
13 1290.42541 2544.27839 69 14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
14 1028.15545 159.007068 73 15 1126.33177 837.907403 71	
15 1126.33177 837.907403 71	
16 1240 80157 1310 25046 71.4	
10 1240:00137 1310:23040 71.4	
17 1234.64451 1521.96078 70.2	
18 1328.54412 1542.51785 70.8	
19 1340.99381 2092.41894 57	
20 1218.73147 153.646749 73	
21 1484.9939 1253.19966 70.9	
22 1621.45072 1898.49764 71	
23 1706.6526 2130.76766 56	
24 1609.72694 2205.73866 67	
25 1527.34122 419.248873 72	
26 1595.18699 1067.19946 71.5	
27 1680.99234 1180.7081 71	
28 1829.31725 1490.36559 71.5	
29 1834.34173 2001.54801 71	
30 1912.21023 2177.02698 55.5	
31 1995.38308 808.61062 72.2	
32 2031.97563 2107.19589 55	
33 2266.97172 2359.96526 54.5	

- Render a topographic map using appropriate tools
 - By-hand; Excel, R-script
 - QuickGrid, Surfer, etc.
 - Arc GIS, qGIS, etc.
- Adjust settings to build an overlay



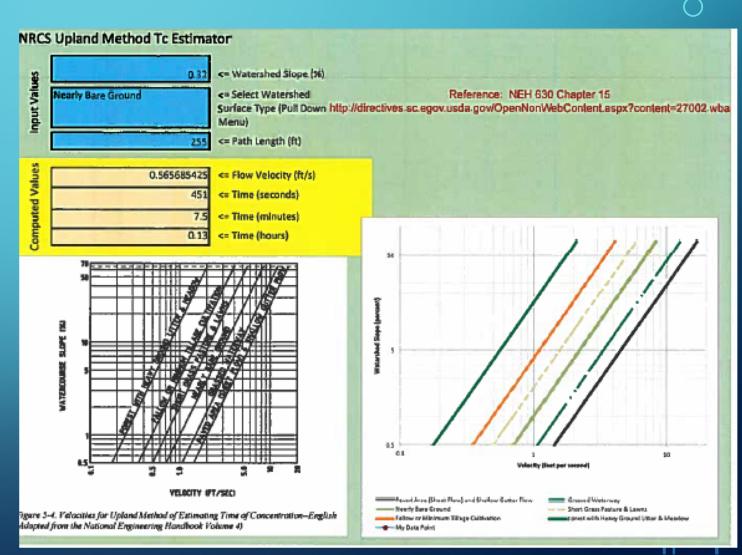
 Overlay the map – use known data locations (in XY) to reference the overlay to the sewer drawing


DETERMINE DRAINAGE AREAS

- Identify the individual drainage areas using the topographic rendering and the project layout drawing.
- We will assume that drainage from outside the project area is collected elsewhere
 - The figure to the right is intended as a guide to the method – the areas listed are not topographically justified; that is left as an exercise!

DETERMINE PIPE DISTANCES

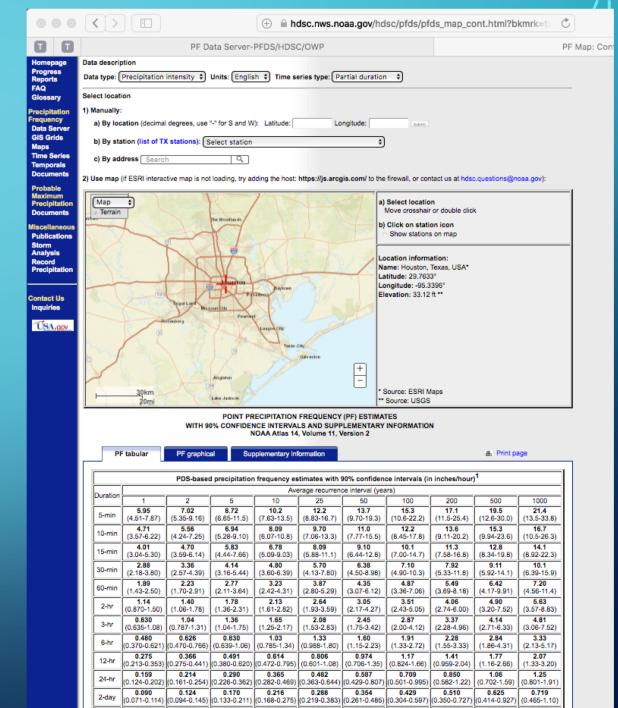
- Identify the pipes to be sized in the drainage network
- Measure the pipe lengths



TABULATE PREPARATORY RESULTS

	4	DE-	ARC.	DATE	FROM	Acens	- T				
Node			Area (sq. ft.)		Overland Flow Distance (feet)	NRCS Upland Velocity (ft/sec)		Average Slope			
1000	1		152920.962	3.511	391.051		1	Drop	2	feet	
	2	0.370		1.459	252.139			Distance		feet	
	3		417525.773	9.585	646.162			Slope		Dimensionle	1
	4		147766.323	3.392	384.404		ls	Slope		% Slope	
	5	0.350	A SECURITY AND A SECURITY ASSESSMENT	1.381	245.229		4	0.000	0.52	, siope	
	6	0.000		0.000	0.000		5				
-	7	0.000	0.000	0.000	0.000						
	8	1.350	231958.763	5.325	481.621	100					
	9	0.280	48109.966	1.104	219.340	20	N				
	10	1.250	214776.632	4.931	463.440	. 5	b				
	11	0.720	123711.340	2.840	351.726	3.33	5				
	12	0.310	53264.605	1.223	230.791	3 W					
	13	0.380	65292.096	1.499	255.523	3					
	14		-	36.250	Outfall						
ipe		Node_1	Node_2	Length							
•	1	1	3	625							
	2	2	3	400							
	3	3	4	300							
	4	4	6	125							
	5	5		250							
	6	6	7	250							
	7	7	9	125							
	8	8		375							
	9	9		280							
	10	11	10	300							
	11	10		250							
	12	13	12	300							
	13	12	14	125							

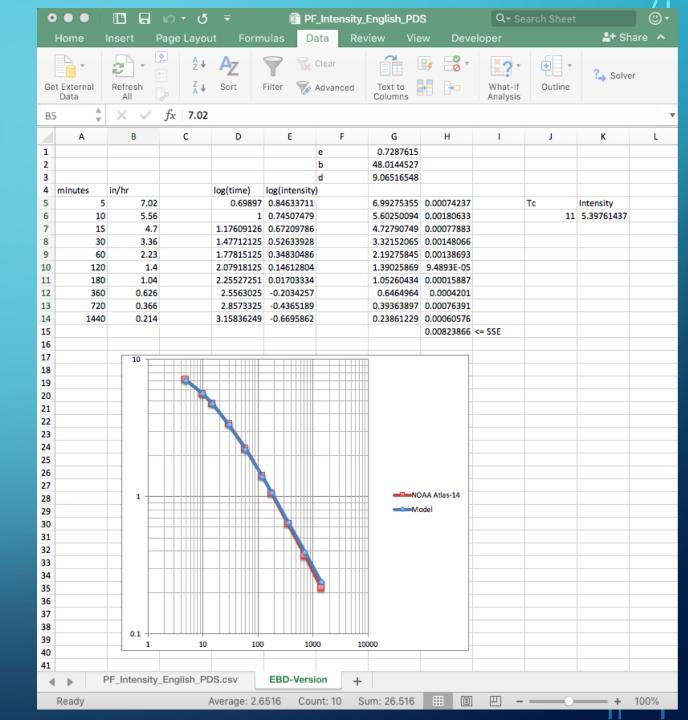
DETERMINE INLET TIMES


- Declare a travel distance on a drainage area to an inlet
- Determine slope along that path
- Apply a Tc estimation method
- Repeat for each inlet

DEVELOP AN INTENSITY EQUATION

- Locate the region on NOAA
 Atlas 14, Vol. 11 PFDS.
- Download the .CSV table
- Use solver to fit

$$I = \frac{B}{(T_c + D)^E}$$



DEVELOP AN INTENSITY EQUATION

Solver results for (2-yr ARI)

$$I = \frac{48.01}{(T_c + 9.06)^{0.73}}$$

- Use the above equation in the subsequent analysis
- Note: The exercise requests a design for 5-yr ARI, so readers will have to conduct the fitting exercise on the 5-yr column from NOAA Atlas 14!

ANALYSIS

Apply the intensity equation as needed