
toolkit.rtf EPANET Programmer's Toolkit Page 1 of 74

EPANET Programmer's Toolkit

EPANET is a program that analyzes the hydraulic and water quality behavior of water
distribution systems. The EPANET Programmer's Toolkit is a dynamic link library (DLL) of
functions that allows developers to customize EPANET's computational engine for their own
specific needs. The functions can be incorporated into 32-bit Windows applications written
in C/C++, Delphi Pascal, Visual Basic, or any other language that can call functions within a
Windows DLL. The Toolkit DLL file is named EPANET2.DLL and is distributed with
EPANET. The Toolkit comes with several different header files, function definition files,
and .lib files that simplify the task of interfacing it with C/C++, Delphi, and Visual Basic code.

EPANET and its Programmer's Toolkit were developed by the Water Supply and Water Resources
Division of the U.S. Environmental Protection Agency's National Risk Management Research Laboratory.

1. Toolkit Overview

The Programmer's Toolkit is an extension of the EPANET simulation package. EPANET
performs extended period simulation of hydraulic and water quality behavior within
pressurized pipe networks. A network can consist of pipes, nodes (pipe junctions), pumps,
valves and storage tanks or reservoirs. EPANET tracks the flow of water in each pipe, the
pressure at each node, the height of water in each tank, and the concentration of a
chemical species throughout the network during a multi-time period simulation. In addition
to chemical species, water age and source tracing can also be simulated.

The Toolkit provides a series of functions that allow programmers to customize the use of
EPANET's hydraulic and water quality solution engine to their own applications. Before
using the Toolkit one should become familiar with the way that EPANET represents a pipe
network and the design and operating information it requires to perform a simulation. This
information can be obtained from reading EPANET's on-line Help file or from the EPANET
Users Manual.

A typical usage of the Toolkit functions to analyze a distribution system might look as
follows:

1. Use the ENopen function to open the Toolkit system, along with an EPANET Input file.

2. Use the ENsetxxx series of functions to change selected system characteristics.

3. Run a full hydraulic simulation using the ENsolveH function (which automatically saves
results to a Hydraulics file) or use the ENopenH - ENinitH - ENrunH - ENnextH -
ENcloseH series of functions to step through a hydraulic simulation, accessing results
along the way with the ENgetxxx series of functions.

4. Run a full water quality simulation using ENsolveQ (which automatically saves hydraulic
and water quality results to an Output file) or use the ENopenQ - ENinitQ - ENrunQ -
ENnextQ (or ENstepQ) - ENcloseQ series of functions to step through a water quality
simulation, accessing results along the way with the ENgetxxx series of functions.

5. Return to Step 2 to run additional analyses or use the ENreport function to write a
formatted report to the Report file.

6. Call the ENclose function to close all files and release system memory.

More specific examples of using the functions can be found in the Example Applications topic.

toolkit.rtf EPANET Programmer's Toolkit Page 2 of 74

2. Data Flow Diagram

The EPANET Toolkit is written in
ANSI standard C with separate code
modules for input processing,
hydraulic analysis, water quality
analysis, sparse matrix/linear
equation analysis, and report
generation. The data flow diagram for
analyzing a pipe network is shown
below. The processing steps depicted
in this diagram can be summarized
as follows:

The input processor module receives a description of the network being simulated from
an external input file (.INP). The file’s contents are parsed, interpreted, and stored in a
shared memory area.
The hydraulics solver module carries out an extended period hydraulic simulation. The
results obtained at every time step can be written to an external, unformatted (binary)
hydraulics file (.HYD). Some of these time steps might represent intermediate points in
time where system conditions change because of tanks becoming full or empty or
pumps turning on or off due to level controls or timed operation.
If a water quality simulation is requested, the water quality module accesses the flow
data from the hydraulics file as it computes substance transport and reaction throughout
the network over each hydraulic time step. During this process it can write both the
formerly computed hydraulic results as well as its water quality results for each preset
reporting interval to an unformatted (binary) output file (.OUT). If no water quality
analysis was called for, then the hydraulic results stored in the .HYD file can simply be
written out to the binary output file at uniform reporting intervals.
If requested, a report writer module reads back the computed simulation results from the
binary output file (.OUT) for each reporting period and writes out selected values to a
formatted report file (.RPT). Any error or warning messages generated during the run
are also written to this file.

Toolkit functions exist to carry out all of these steps under the programmer's control,
including the ability to read or modify most of the system's global data.

3. How to Use the Toolkit

The following topics briefly describe how to accomplish some basic tasks for which the
Toolkit would be used. See the Example Applications topic for code listings of complete
applications of the Toolkit.

toolkit.rtf EPANET Programmer's Toolkit Page 3 of 74

3.1. Opening and Closing the Toolkit

The Toolkit must open an EPANET Input File to obtain a description of the pipe network to
be analyzed before any of its other functions can be called. (The exception to this is the
ENepanet function, which performs a complete hydraulic/water quality simulation similar to
a command line execution of EPANET). Once all analysis is completed, it must close itself
down to free all allocated memory. The functions for doing this are ENopen and ENclose,
respectively. An example of using these functions is shown below.

 char *f1, *f2, *f3;
 int errcode;
 errcode = ENopen(f1, f2, f3);
 if (errcode > 0)
 {
 ENclose();
 return;
 }
 /*
 Call functions that perform desired analysis
 */
 ENclose();

3.2. Retrieving and Setting Network Parameters

The Toolkit has various functions available for retrieving and setting the parameters that
define the design and operation of the pipe network being analyzed. The names of retrieval
functions all begin with ENget (e.g., ENgetnodevalue, ENgetoption, etc.) while the
functions used for setting parameter values begin with ENset (e.g., ENsetnodevalue,
ENsetoption, etc.).

Most of these functions use an index number to reference a specific network component
(such as a node, link, or time pattern). This number is simply the position of the component
in the list of all components of similar type (e.g., node 10 is the tenth node, starting from 1,
in the network) and is not the same as the ID label assigned to the component in the Input
File being processed. A series of functions exist to determine a component's index number
given its ID label (see ENgetlinkindex, ENgetnodeindex, and ENgetpatternindex).
Likewise, functions exist to retrieve a component's ID label given its index number (see
ENgetlinkid, ENgetnodeid, and ENgetpatternid). The ENgetcount function can be
used to determine the number of different components in the network.

The code below is an example of using the parameter retrieval and setting functions. It
changes all pipes with diameter of 10 inches to 12 inches.

 int i, Nlinks;
 float D;
 ENgetcount(EN_LINKCOUNT, &Nlinks);
 for (i = 1; i <= Nlinks; i++)
 {
 ENgetlinkvalue(i, EN_DIAMETER, &D);
 if (D == 10)
 ENsetlinkvalue(i, EN_DIAMETER, 12);
 }

toolkit.rtf EPANET Programmer's Toolkit Page 4 of 74

3.3. Running a Hydraulic Analysis

There are two ways to use the Toolkit to run a hydraulic analysis:

1. Use the ENsolveH function to run a complete extended period analysis, without having
access to intermediate results

2. Use the ENopenH - ENinitH - ENrunH- ENnextH - ENcloseH series of functions to
step through the simulation one hydraulic time step at a time.

Method 1 is useful if you only want to run a single hydraulic analysis, perhaps to provide
input to a water quality analysis. With this method hydraulic results are always saved to the
hydraulics file at every time step.

Method 2 must be used if you need to access results between time steps or if you wish to
run many analyses efficiently. To accomplish the latter, you would make only one call to
ENopenH to begin the process, then make successive calls to ENinitH - ENrunH -
ENnextH to perform each analysis, and finally call ENcloseH to close down the hydraulics
system. An example of this is shown below (calls to ENnextH are not needed because we
are only making a single period analysis in this example).

 int i, Nruns;
 long t;
 ENopenH()
 for (i = 1; i <= Nruns; i++)
 {
 /* Set parameters for current run */
 setparams(i);
 /* Initialize hydraulics */
 ENinitH(0);
 /* Make a single period run */
 ENrunH(&t);
 /* Retrieve results */
 getresults(i);
 }
 ENcloseH();

3.4. Running a Water Quality Analysis

Before you can run a water quality analysis, hydraulic results must have been generated
either from running a hydraulic analysis or from importing a saved hydraulics file from a
previous run. As with a hydraulic analysis, there are two ways to carry out a water quality
analysis:

1. Use the ENsolveQ function to run a complete extended period analysis, without having
access to intermediate results

2. Use the ENopenQ - ENinitQ - ENrunQ- ENnextQ - ENcloseQ series of functions to
step through the simulation one hydraulic time step at a time. (Replacing ENnextQ with
ENstepQ will step through one water quality time step at a time.)

An example of using method 2 is shown below.

toolkit.rtf EPANET Programmer's Toolkit Page 5 of 74

 int err;
 long t, tstep;
 err = ENsolveH();
 if (err > 100) return(err);
 ENopenQ();
 ENinitQ(1);
 do {
 ENrunQ(&t);
 ENnextQ(&tstep);
 } while (tstep > 0);
 ENcloseQ();
 ENreport();

3.5. Retrieving Computed Results

The ENgetnodevalue and ENgetlinkvalue functions are used to retrieve the results of
hydraulic and water quality simulations. The computed parameters (and their Toolkit codes)
that can be retrieved are as follows:

For Nodes: For Links:

EN_DEMAND (demand) EN_FLOW (flow rate)

EN_HEAD (hydraulic head) EN_VELOCITY (flow velocity)

EN_PRESSURE (pressure) EN_HEADLOSS (headloss)

EN_QUALITY (water quality) EN_STATUS (link status)

EN_SOURCEMASS (water quality source
mass inflow)

EN_SETTING (pump speed or valve setting)

The following code shows how to retrieve the pressure at each node of the network after
each time step of a hydraulic analysis (writetofile is a user-defined function that will write a
record to a file):

 int i, NumNodes;
 long t, tstep;
 float p;
 char id[16];
 ENgetcount(EN_NODECOUNT, &NumNodes);
 ENopenH();
 ENinitH(0);
 do {
 ENrunH(&t);
 for (i = 1; i <= NumNodes; i++)
 {
 ENgetnodevalue(i, EN_PRESSURE, &p);
 ENgetnodeid(i, id);
 writetofile(t, id, p);
 }
 ENnextH(&tstep);
 } while (tstep > 0);
 ENcloseH();

toolkit.rtf EPANET Programmer's Toolkit Page 6 of 74

3.6. Writing a Report

The Toolkit has some built-in capabilities to produce formatted output results saved to a file.
More specialized reporting needs can always be handled by writing specialized code.

The ENsetreport function is used to define the format of a report while the ENreport
function actually writes the report. The latter should be called only after a hydraulic or water
quality analysis has been made. An example of creating a report that lists all nodes where
the pressure variation over the duration of the simulation exceeds 20 psi is shown below:

/* Compute ranges (max ­ min) */
 ENsettimeparam(EN_STATISTIC, EN_RANGE);
/* Solve hydraulics */
 ENsolveH();
/* Transfer results from hydraulics file to output file */
 ENsaveH();
/* Define contents of the report */
 ENresetreport();
 ENsetreport("FILE myfile.rpt");
 ENsetreport("NODES ALL");
 ENsetreport("PRESSURE PRECISION 1");
 ENsetreport("PRESSURE ABOVE 20");
/* Write the report to file */
 ENreport();

4. Example Applications

Example 1 - Providing an embedded engine for other applications

This example shows how simple it is for the Toolkit to provide a network analysis engine for
other applications. There are three steps that the application would need to take:

1. Write distribution system data to an EPANET-formatted Input file (see Input File
Format).

2. Call the ENepanet function, supplying the name of the EPANET input file, the name of a
Report file where status and error messages are written, and the name of a binary
Output file which will contain analysis results.

3. Access the output file to display desired analysis results (see Output File Format) in the
application.

Example 2 - Developing a hydrant rating curve for fire flow studies

This example illustrates how the Toolkit could be used to develop a hydrant rating curve
used in fire flow studies. This curve shows the amount of flow available at a node in the
system as a function of pressure. The curve is generated by running a number of steady
state hydraulic analyses with the node of interest subjected to a different demand in each
analysis. For this example we assume that the ID label of the node of interest is MyNode
and that N different demand levels stored in the array D need to be examined. The
corresponding pressures will be stored in P. To keep the code more readable, no error
checking is made on the results returned from the Toolkit function calls.

toolkit.rtf EPANET Programmer's Toolkit Page 7 of 74

Example 2 – C

#include "epanet2.h"

void HydrantRating(char *MyNode, int N, float D[], float P[])
{
 int i, nodeindex;
 long t;
 float pressure;

 /* Open the EPANET toolkit & hydraulics solver */
 ENopen("example2.inp", "example2.rpt", "");
 ENopenH();

 /* Get the index of the node of interest */
 ENgetnodeindex(MyNode, &nodeindex);

 /* Iterate over all demands */
 for (i=1; i<N; i++)
 {
 /* Set nodal demand, initialize hydraulics, make a
 single period run, and retrieve pressure */
 ENsetnodevalue(nodeindex, EN_BASEDEMAND, D[i]);
 ENinitH(0);
 ENrunH(&t);
 ENgetnodevalue(nodeindex, EN_PRESSURE, &pressure);
 P[i] = pressure;
 }
 /* Close hydraulics solver & toolkit */
 ENcloseH();
 ENclose();
}

Example 2 – Pascal

uses epanet2; { Import unit supplied with Toolkit }

procedure HydrantRating(MyNode: PChar; N: Integer;
 D: array of Single; var P: array of Single);

var
 i, nodeindex: Integer;
 t: LongInt;
 pressure: Single;

begin
{ Open the EPANET toolkit & hydraulics solver }
 ENopen('example2.inp', 'example2.rpt', '');
 ENopenH();
{ Get the index of the node of interest }
 ENgetnodeindex(MyNode, nodeindex);
{ Iterate over all demands }

toolkit.rtf EPANET Programmer's Toolkit Page 8 of 74

 for i := 1 to N do
 begin
 { Set nodal demand, initialize hydraulics, make a }
 { single period run, and retrieve pressure }
 ENsetnodevalue(nodeindex, EN_BASEDEMAND, D[i]);
 ENinitH(0);
 ENrunH(t);
 ENgetnodevalue(nodeindex, EN_PRESSURE, pressure);
 P[i] := pressure;
 end;
{ Close hydraulics solver & toolkit }
 ENcloseH();
 ENclose();
end;

Example 2 - Visual Basic

'Add EPANET2.BAS as a code module to your project

Sub HydrantRating(ByVal MyNode as String, N as Long,_
 D() as Single, P() as Single)

Dim i as Long
Dim nodeindex as Long
Dim t as Long
Dim pressure as Single

'Open the EPANET toolkit and hydraulics solver
ENopen "example2.inp", "example2.rpt", ""
ENopenH

'Get the index of the node of interest
ENgetnodeindex MyNode, nodeindex

'Iterate over all demands
For i = 1 to N
 'Set nodal demand, initialize hydraulics, make a
 'single period run, and retrieve pressure
 ENsetnodevalue nodeindex, EN_BASEDEMAND, D(i)
 ENinitH 0
 ENrunH t
 ENgetnodevalue nodeindex, EN_PRESSURE, pressure
 P(i) = pressure
Next i
'Close hydraulics solver & toolkit
ENcloseH
ENclose
End Sub

toolkit.rtf EPANET Programmer's Toolkit Page 9 of 74

Example 3 - Meeting a minimum chlorine residual target

This example illustrates how the Toolkit could be used to determine the lowest dose of
chlorine applied at the entrance to a distribution system needed to ensure that a minimum
residual is met throughout the system. We assume that the EPANET input file contains the
proper set of kinetic coefficients that describe the rate at which chlorine will decay in the
system being studied. In the example code, the ID label of the source node is contained in
SourceID, the minimum residual target is given by Ctarget, and the target is only checked
after a start-up duration of 5 days (432,000 seconds). To keep the code more readable, no
error checking is made on the results returned from the Toolkit function calls.

Example 3 – C

#include "epanet.h"

float cl2dose(char *SourceID, float Ctarget)
{
 int i, nnodes, sourceindex, violation;
 float c, csource;
 long t, tstep;

 /* Open the toolkit & obtain a hydraulic solution */
 ENopen("example3.inp", "example3.rpt", "");
 ENsolveH();

 /* Get the number of nodes & the source node's index */
 ENgetcount(EN_NODES, &nnodes);
 ENgetnodeindex(SourceID, &sourceindex);

 /* Setup system to analyze for chlorine
 (in case it was not done in the input file.) */
 ENsetqualtype(EN_CHEM, "Chlorine", "mg/L", "");

 /* Open the water quality solver */
 ENopenQ();

 /* Begin the search for the source concentration */
 csource = 0.0;
 do {
 /* Update source concentration to next level */
 csource = csource + 0.1;
 ENsetnodevalue(sourceindex, EN_SOURCEQUAL, csource);
 /* Run WQ simulation checking for target violations */
 violation = 0;
 ENinitQ(0);
 do {
 ENrunQ(&t);
 if (t > 432000)
 {
 for (i=1; i<=nnodes; i++)
 {
 ENgetnodevalue(i, EN_QUALITY, &c);
 if (c < Ctarget)
 {

toolkit.rtf EPANET Programmer's Toolkit Page 10 of 74

 violation = 1;
 break;
 }
 }
 }
 ENnextQ(&tstep);
 /* End WQ run if violation found */
 } while (!violation && tstep > 0);
 /* Continue search if violation found */
 } while (violation && csource <= 4.0);

 /* Close up the WQ solver and toolkit */
 ENcloseQ();
 ENclose();
 return csource;
}

Example 3 – Pascal

uses epanet2; { Import unit supplied with the Toolkit }

function cl2dose(SourceID: PChar; Ctarget: Single): Single;
var
 i, nlinks, nnodes, sourceindex, violation: Integer;
 c, csource: Single;
 t, tstep: LongInt;
begin
 { Open the toolkit & obtain a hydraulic solution }
 ENopen('example3.inp', 'example3.rpt', '');
 ENsolveH();

 { Get the number of nodes & }
 { the source node's index }
 ENgetcount(EN_NODES, nnodes);
 ENgetnodeindex(SourceID, sourceindex);

 { Setup system to analyze for chlorine }
 { (in case it was not done in the input file.) }
 ENsetqualtype(EN_CHEM, 'Chlorine', 'mg/L', '');

 { Open the water quality solver }
 ENopenQ();

 { Begin the search for the source concentration }
 csource := 0;
 repeat

 { Update source concentration to next level }
 csource := csource + 0.1;
 ENsetnodevalue(sourceindex, EN_SOURCEQUAL, csource);

 { Run WQ simulation checking for target violations }

toolkit.rtf EPANET Programmer's Toolkit Page 11 of 74

 violation := 0;
 ENinitQ(0);
 repeat
 ENrunQ(t);
 if (t > 432000) then
 begin
 for i := 1 to nnodes do
 begin
 ENgetnodevalue(i, EN_QUALITY, c);
 if (c < Ctarget) then
 begin
 violation := 1;
 break;
 end;
 end;
 end;
 ENnextQ(tstep);
 { End WQ run if violation found }
 until (violation = 1) or (tstep = 0);

 { Continue search if violation found }
 until (violation = 0) or (csource >= 4.0);

 { Close up the WQ solver and toolkit }
 ENcloseQ();
 ENclose();
 result := csource;
end;

Example 3 - Visual Basic

'Add EPANET.BAS as a code module to your project

Function cl2dose(ByVal SourceID as String,_
 ByVal Ctarget as Single)as Single

Dim i as Long
Dim nlinks as Long
Dim nnodes as Long
Dim sourceindex as Long
Dim violation as Integer
Dim c as Single
Dim csource as Single
Dim t as Long
Dim tstep as Long

'Open the toolkit & obtain a hydraulic solution
ENopen "example3.inp", "example3.rpt", ""
ENsolveH

'Get the number of nodes & the source node's index

toolkit.rtf EPANET Programmer's Toolkit Page 12 of 74

ENgetcount EN_NODES, nnodes
ENgetnodeindex SourceID, sourceindex

'Setup system to analyze for chlorine
'(in case it was not done in the input file.)
ENsetqualtype EN_CHEM, "Chlorine", "mg/L", ""

'Open the water quality solver
ENopenQ

'Begin the search for the source concentration
csource = 0
Do

 'Update source concentration to next level
 csource = csource + 0.1
 ENsetnodevalue sourceindex, EN_SOURCEQUAL, csource

 'Run WQ simulation checking for target violations
 violation = 0
 ENinitQ 0
 Do
 ENrunQ t
 If t > 432000 Then
 For i = 1 to nnodes
 ENgetnodevalue i, EN_QUALITY, c
 If c < Ctarget Then
 violation = 1
 Exit For
 End If
 Next i
 End If
 ENnextQ tstep

 'End WQ run if violation found
Loop Until (violation = 1) Or (tstep = 0)

'Continue search if violation found
Loop Until (violation = 0) Or (csource >= 4.0)

'Close up the WQ solver and toolkit
ENcloseQ
ENclose
cl2dose = csource
End Function

toolkit.rtf EPANET Programmer's Toolkit Page 13 of 74

5. Efficiency Issues

When making multiple hydraulic analyses on the same network (as would be done in an
optimization procedure), do not use repeated calls to ENsolveH. Instead, use an iterated
ENrunH - ENnextH loop as shown below:

int stop;
 long t, tstep;
 ENopenH();
 stop = 0;
 do {
 setparams();
 ENinitH(0);
 do
 {
 ENrunH(&t);
 evalresults(t, &stop);
 ENnextH(&tstep);
 } while (tstep > 0 && !stop);
 } while (!stop);
 ENcloseH();

In the code above, setparams() would be a user-defined function which modifies the
network in some manner from one iteration to the next. Another user-defined function,
evalresults(), would evaluate the results at time t and set the value of a stop flag that
signals the end of the iterations. Note that the argument passed to ENinitH() is 0,
indicating that there is no need to save hydraulic results to file since they are being used
directly as they are generated. This will also speed up the computations.

When there is a need to make repeated water quality runs using the same hydraulics, then
call ENsolveH once to generate and save the hydraulic solution and use code similar to
that above for the water quality runs (using the ENopenQ, ENinitQ, ENrunQ, ENnextQ,
and ENcloseQ functions instead).

6. Toolkit Reference

6.1. Error Codes

Code Description

0 No error

101 Insufficient memory
102 No network data to process
103 Hydraulics solver not initialized
104 No hydraulic results available
105 Water quality solver not initialized
106 No results to report on

toolkit.rtf EPANET Programmer's Toolkit Page 14 of 74

110 Cannot solve hydraulic equations
120 Cannot solve WQ transport equations

200 One or more errors in input file
202 Illegal numeric value in function call
203 Undefined node in function call
204 Undefined link in function call
205 Undefined time pattern in function call
207 Attempt made to control a check valve
223 Not enough nodes in network
224 No tanks or reservoirs in network
240 Undefined source in function call
241 Undefined control statement in function call
250 Function argument has invalid format
251 Illegal parameter code in function call

301 Identical file names
302 Cannot open input file
303 Cannot open report file
304 Cannot open binary output file
305 Cannot open hydraulics file
306 Invalid hydraulics file
307 Cannot read hydraulics file
308 Cannot save results to file
309 Cannot write report to file

6.2. Warning Codes

Code Description

1 System hydraulically unbalanced - convergence to a hydraulic solution
was not achieved in the allowed number of trials

2 System may be hydraulically unstable - hydraulic convergence was only
achieved after the status of all links was held fixed

3 System disconnected - one or more nodes with positive demands were
disconnected from all supply sources

4 Pumps cannot deliver enough flow or head - one or more pumps were
forced to either shut down (due to insufficient head) or operate beyond
the maximum rated flow

5 Valves cannot deliver enough flow - one or more flow control valves
could not deliver the required flow even when fully open

6 System has negative pressures - negative pressures occurred at one or
more junctions with positive demand

toolkit.rtf EPANET Programmer's Toolkit Page 15 of 74

6.3. File Descriptions

Support Files

The EPANET Programmer's Toolkit comes with several files that support its use with
different programming languages.

File Name Purpose

epanet2.h Header file for C/C++

epanet2bc.lib Library file for Borland C/C++

epanet2vc.lib Library file for Microsoft Visual C++

epanet2.pas Import unit for Delphi (Pascal)

epanet2.bas Declarations module for Visual Basic

Input File

The Input file is a standard EPANET input data file that describes the system being
analyzed (see Input File Format). It can either be created external to the application being
developed with the Toolkit or by the application itself. It is the first file name supplied to the
ENopen function. None of the other Toolkit functions (except ENepanet) can be used until
an Input file has been opened with ENopen. The data associated with the Input file remains
accessible until the Toolkit system is closed down with the ENclose function.

Hydraulics File

The Hydraulics file is an unformatted binary file used to store the results of a hydraulic
analysis. Results for all time periods are stored, including those at intermediate times when
special hydraulic events occur (e.g., pumps and tanks opening or closing because control
conditions have been satisfied).

Normally it is a temporary file that is deleted after the ENclose function is called. However,
it will be saved if the ENsavehydfile function is called.

Likewise, a previously saved Hydraulics file can be used if the command HYDRAULICS USE
filename appears in the [OPTIONS] section of the input file, or if the ENusehydfile
function is called.

When the Toolkit function ENsolveH is used to make a hydraulic analysis, results are
automatically saved to the Hydraulics file. When the ENinitH - ENrunH - ENnextH set of
functions is used, the saveflag argument to ENinitH determines whether results are
saved or not. The need to save hydraulic results is application-dependent. They must
always be saved to the Hydraulics file if a water quality analysis will follow.

Report File

The Report file is the second file name supplied to the ENopen (or ENepanet) function. It
is used to log any error messages that occur when the Input file is being processed and to

toolkit.rtf EPANET Programmer's Toolkit Page 16 of 74

record all status messages that are generated during a hydraulic simulation. In addition, if
the ENreport function is called the resulting report can also be written to this file. The
format of the report is controlled by statements placed in the [REPORT] section of the Input
file and by similar statements included in calls to the ENsetreport function. Only results at
a specified uniform reporting time interval are written to this file.

To suppress the writing of all error and warning messages to the Report file either include
the command MESSAGES NO in the [REPORT] section of the Input file or call the Toolkit
function ENsetreport("MESSAGES NO").

To route a formatted report to a different file than the Report file either include the
command FILE filename in the [REPORT] section of the Input file or call the Toolkit
function ENsetreport("FILE filename"), where filename is the name of the file to
use.

Output File

The Output file is an unformatted binary file used to store both hydraulic and water quality
results at uniform reporting intervals (see Output File Format). It is the third file name
supplied to the ENopen function. If an empty string ("") is used as its name then a scratch
temporary file will be used. Otherwise the Output file will be saved after the ENclose
function is called. Saving this file is useful if further post-processing of the output results are
needed. The function ENsaveH will transfer hydraulic results to the Output file if no water
quality analysis will be made. Using ENsolveQ to run a water quality analysis automatically
saves both hydraulic and water quality results to this file. If the ENinitQ - ENrunQ -
ENnextQ set of functions is used to perform a water quality analysis, then results will be
saved only if the saveflag argument of ENinitQ is set to 1. Again, the need to save
results to the Output file is application-dependent. If a formatted output report is to be
generated using ENreport, then results must first be saved to the Output file.

6.3.1. Input File Format

The EPANET Toolkit works with an input text file that describes the pipe network being
analyzed. The file is organized by sections where each section begins with a keyword
enclosed in brackets. The various keywords are listed below. Click on a section to see the
format of the data it contains.

Network
Components

System
Operation

Water
Quality

Options &
Reporting

[TITLE] [CURVES] [QUALITY] [OPTIONS]

[JUNCTIONS] [PATTERNS] [REACTIONS] [TIMES]

[RESERVOIRS] [ENERGY] [SOURCES] [REPORT]

[TANKS] [STATUS] [MIXING]

[PIPES] [CONTROLS]

[PUMPS] [RULES]

[VALVES] [DEMANDS]

[EMITTERS]

toolkit.rtf EPANET Programmer's Toolkit Page 17 of 74

The order of sections is not important. However, whenever a node or link is referred to in a
section it must have already been defined in the [JUNCTIONS], [RESERVOIRS],
[TANKS], [PIPES], [PUMPS], or [VALVES] sections. Thus it is recommended that these
sections be placed first.

Each section can contain one or more lines of data. Blank lines can appear anywhere in the
file and the semicolon (;) can be used to indicate that what follows on the line is a
comment, not data. A maximum of 255 characters can appear on a line.

The ID labels used to identify nodes, links, curves and patterns can be any combination of
up to 15 characters and numbers.

[TITLE]

Purpose:
Attaches a descriptive title to the network being analyzed.

Format:
Any number of lines of text.

Remarks:
The [TITLE] section is optional.

[JUNCTIONS]

Purpose:
Defines junction nodes contained in the network.

Format:
One line for each junction containing:

ID label
Elevation, ft (m)
Base demand flow (flow units) (optional)
Demand pattern ID (optional)

Remarks:
1. A [JUNCTIONS] section with at least one junction is required.
2. If no demand pattern is supplied then the junction demand follows the Default Demand

Pattern provided in the [OPTIONS] section, or Pattern 1 if no Default Pattern is
specified. If the Default Pattern (or Pattern 1) does not exist, then the demand remains
constant.

3. Demands can also be entered in the [DEMANDS] section and include multiple demand
categories per junction.

Example:

[JUNCTIONS]
;ID Elev. Demand Pattern
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
J1 100 50 Pat1
J2 120 10 ;Uses default demand pattern
J3 115 ;No demand at this junction

toolkit.rtf EPANET Programmer's Toolkit Page 18 of 74

[RESERVOIRS]

Purpose: Defines all reservoir nodes contained in the network.

Format: One line for each reservoir containing:
ID label
Head, ft (m)
Head pattern ID (optional)

Remarks:
1. Head is the hydraulic head (elevation + pressure head) of water in the reservoir.
2. A head pattern can be used to make the reservoir head vary with time.
3. At least one reservoir or tank must be contained in the network.

Example:
[RESERVOIRS]
;ID Head Pattern
;­­­­­­­­­­­­­­­­­­­­­
 R1 512 ;Head stays constant
 R2 120 Pat1 ;Head varies with time

[TANKS]

Purpose: Defines all tank nodes contained in the network.

Format: One line for each tank containing:
ID label
Bottom elevation, ft (m)
Initial water level, ft (m)
Minimum water level, ft (m)
Maximum water level, ft (m)
Nominal diameter, ft (m)
Minimum volume, cubic ft (cubic meters)
Volume curve ID (optional)

Remarks:
1. Water surface elevation equals bottom elevation plus water level.
2. Non-cylindrical tanks can be modeled by specifying a curve of volume versus water

depth in the [CURVES] section.
3. If a volume curve is supplied the diameter value can be any non-zero number
4. Minimum volume (tank volume at minimum water level) can be zero for a cylindrical tank

or if a volume curve is supplied.
5. A network must contain at least one tank or reservoir.

Example:

[TANKS]
;ID Elev. InitLvl MinLvl MaxLvl Diam MinVol VolCurve
;­­­
;Cylindrical tank
T1 100 15 5 25 120 0
;Non­cylindrical tank with arbitrary diameter
 T2 100 15 5 25 1 0 VC1

toolkit.rtf EPANET Programmer's Toolkit Page 19 of 74

[PIPES]

Purpose: Defines all pipe links contained in the network.

Format:
One line for each pipe containing:

ID label
ID of start node
ID of end node
Length, ft (m)
Diameter, inches (mm)
Roughness coefficient
Minor loss coefficient
Status (OPEN, CLOSED, or CV)

Remarks:
1. Roughness coefficient is unitless for Hazen-Williams and Chezy-Manning head loss

formulas and has units of millifeet (mm) for the Darcy-Weisbach formula. Choice of
head loss formula is supplied in the [OPTIONS] section.

2. Setting status to CV means that the pipe contains a check valve restricting flow to one
direction.

3. If minor loss coefficient is 0 and pipe is OPEN then these two items can be dropped from
the input line.

Example:
[PIPES]
;ID Node1 Node2 Length Diam. Roughness Mloss Status
;­­­
 P1 J1 J2 1200 12 120 0.2 OPEN
 P2 J3 J2 600 6 110 0 CV
 P3 J1 J10 1000 12 120

[PUMPS]

Purpose:
Defines all pump links contained in the network.

Format:
One line for each pump containing:

ID label
ID of start node
ID of end node
Keyword and Value (can be repeated)

Remarks:
1. Keywords consists of:

POWER - power for constant energy pump, hp (kw)
HEAD - ID of curve that describes head versus flow for the pump
SPEED - relative speed setting (normal speed is 1.0, 0 means pump is off)
PATTERN - ID of time pattern that describes how speed setting varies with time

2. Either POWER or HEAD must be supplied for each pump. The other keywords are
optional.

toolkit.rtf EPANET Programmer's Toolkit Page 20 of 74

Example:

[PUMPS]
;ID Node1 Node2 Properties
;­­­
Pump1 N12 N32 HEAD Curve1
Pump2 N121 N55 HEAD Curve1 SPEED 1.2
Pump3 N22 N23 POWER 100

[VALVES]

Purpose: Defines all control valve links contained in the network.

Format: One line for each valve containing:
ID label
ID of start node
ID of end node
Diameter, inches (mm)
Valve type
Valve setting
Minor loss coefficient

Remarks:
1. Valve types and settings include:

Valve Type Setting

PRV (pressure reducing valve) Pressure, psi (m)

PSV (pressure sustaining valve) Pressure, psi (m)

PBV (pressure breaker valve) Pressure, psi (m)

FCV (flow control valve) Flow (flow units)

TCV (throttle control valve) Loss Coefficient

GPV (general purpose valve) ID of head loss curve

2. Shutoff valves and check valves are considered to be part of a pipe, not a separate
control valve component (see [PIPES])

[EMITTERS]

Purpose: Defines junctions modeled as emitters (sprinklers or orifices).

Format: One line for each emitter containing:
Junction ID label
Flow coefficient, flow units at 1 psi (1 meter) pressure drop

Remarks:
1. Emitters are used to model flow through sprinkler heads or pipe leaks.
2. Flow out of the emitter equals the product of the flow coefficient and the junction

pressure raised to a power.

toolkit.rtf EPANET Programmer's Toolkit Page 21 of 74

3. The power can be specified using the EMITTER EXPONENT option in the [OPTIONS]
section. The default power is 0.5, which normally applies to sprinklers and nozzles.

4. Actual demand reported in the program's results includes both the normal demand at
the junction plus flow through the emitter.

5. An [EMITTERS] section is optional.

[CURVES]

Purpose: Defines data curves and their X,Y points.

Format: One line for each X,Y point on each curve containing:
Curve ID label
X value
Y value

Remarks:
1. Curves can be used to represent the following relations:

Head v. Flow for pumps
Efficiency v. Flow for pumps
Volume v. Depth for tanks
Head Loss v. Flow for General Purpose Valves

2. The points of a curve must be entered in order of increasing X-values (lower to higher).
3. If the input file will be used with the Windows version of EPANET, then adding a

comment which contains the curve type and description, separated by a colon, directly
above the first entry for a curve will ensure that these items appear correctly in
EPANET’s Curve Editor. Curve types include PUMP, EFFICIENCY, VOLUME, and
HEADLOSS. See the examples below.

Example:

[CURVES]
;ID Flow Head
;PUMP: Curve for Pump 1
C1 0 200
C1 1000 100
C1 3000 0

;ID Flow Effic.
;EFFICIENCY:
E1 200 50
E1 1000 85
E1 2000 75
E1 3000 65

[PATTERNS]

Purpose: Defines time patterns.

Format: One or more lines for each pattern containing:
Pattern ID label
One or more multipliers

toolkit.rtf EPANET Programmer's Toolkit Page 22 of 74

Remarks:
1. Multipliers define how some base quantity (e.g., demand) is adjusted for each time

period.
2. All patterns share the same time period interval as defined in the [TIMES] section.
3. Each pattern can have a different number of time periods.
4. When the simulation time exceeds the pattern length the pattern wraps around to its first

period.
5. Use as many lines as it takes to include all multipliers for each pattern.

Example:

[PATTERNS]
;Pattern P1
P1 1.1 1.4 0.9 0.7
P1 0.6 0.5 0.8 1.0
;Pattern P2
P2 1 1 1 1
P2 0 0 1

[ENERGY]

Purpose: Defines parameters used to compute pumping energy and cost.

Formats:

GLOBAL PRICE/PATTERN/EFFIC value PUMP PumpID
PRICE/PATTERN/EFFIC value
DEMAND CHARGE value

Remarks:
1. First format is used to set global default values of energy price, price pattern, and

pumping efficiency for all pumps.
2. Second format is used to override global defaults for specific pumps.
3. Parameters are defined as follows:

PRICE = average cost per kW-hour,
PATTERN = ID label of time pattern describing how energy price varies with time,
EFFIC = either a single percent efficiency for global setting or the ID label of an
efficiency curve for a specific pump,
DEMAND CHARGE = added cost per maximum kW usage during the simulation period.

4. The default global pump efficiency is 75% and the default global energy price is 0.
5. All entries in this section are optional. Items offset by slashes (/) indicate allowable

choices.

Example:

[ENERGY]
GLOBAL PRICE 0.05 ;Sets global energy price
GLOBAL PATTERN PAT1 ;and time­of­day pattern
PUMP 23 PRICE 0.10 ;Overrides price for Pump 23
PUMP 23 EFFIC E23 ;Assigns effic. curve to Pump 23

toolkit.rtf EPANET Programmer's Toolkit Page 23 of 74

[STATUS]

Purpose: Defines initial status of selected links at the start of a simulation.

Format: One line per link being controlled containing:
Link ID label
Status or setting

Remarks:
1. Links not listed in this section have a default status of OPEN (for pipes and pumps) or

ACTIVE (for valves).
2. The Status value assigned in this section can be OPEN or CLOSED. For control valves

(e.g., PRVs, FCVs, etc.) this means that the valve is either fully opened or closed, not
active at its control setting.

3. The Setting value can be a speed setting for pumps or valve setting for valves.
4. The initial status of pipes can also be set in the [PIPES] section.
5. Check valves cannot have their status be preset.
6. Use [CONTROLS] or [RULES] to change status or setting at some future point in the

simulation.
7. If a CLOSED or OPEN control valve is to become ACTIVE again, then its pressure or flow

setting must be specified in the control or rule that reactivates it.

Example:

[STATUS]
; Link Status/Setting
;­­­­­­­­­­­­­­­­­­­­­­
 L22 CLOSED ;Link L22 is closed
 P14 1.5 ;Speed for pump P14
 PRV1 OPEN ;PRV1 forced open
 ;(overrides normal operation)

[DEMANDS]

Purpose:
Supplement to [JUNCTIONS] section for defining multiple water demands at junction nodes.

Format: One line for each category of demand at a junction containing:
Junction ID label
Base demand (flow units)
Demand pattern ID (optional)
Name of demand category preceded by a semicolon (optional)

Remarks:
1. Only use for junctions whose demands need to be changed or supplemented from

entries in [JUNCTIONS] section.
2. Data in this section replaces any demand entered in [JUNCTIONS] section for the

same junction.
3. Unlimited number of demand categories can be entered per junction.
4. If no demand pattern is supplied then the junction demand follows the Default Demand

Pattern provided in the [OPTIONS] section, or Pattern 1 if no Default Pattern is
supplied. If the Default Pattern (or Pattern 1) does not exist, then the demand remains
constant.

toolkit.rtf EPANET Programmer's Toolkit Page 24 of 74

Example:

[DEMANDS]
;ID Demand Pattern Category
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
J1 100 101 ;Domestic
J1 25 102 ;School
J256 50 101 ;Domestic

[CONTROLS]

Purpose: Defines simple controls that modify links based on a single condition.

Format: One line for each control which can be of the form:

LINK linkID status IF NODE nodeID ABOVE/BELOW value
LINK linkID status AT TIME time
LINK linkID status AT CLOCKTIME clocktime AM/PM

where:
linkID = a link ID label
status = OPEN or CLOSED, a pump speed setting, or a control valve setting
nodeID = a node ID label
value = a pressure for a junction or a water level for a tank
time = a time since the start of the simulation in hours
clocktime = a 24-hour clock time (hrs:min)

Remarks:
1. Simple controls are used to change link status or settings based on tank water level,

junction pressure, time into the simulation or time of day.
2. See the notes for the [STATUS] section for conventions used in specifying link status

and setting, particularly for control valves.

Examples:

[CONTROLS]
;Close Link 12 if the level in Tank 23 exceeds 20 ft.
LINK 12 CLOSED IF NODE 23 ABOVE 20

;Open Link 12 if the pressure at Node 130 is under 30 psi
LINK 12 OPEN IF NODE 130 BELOW 30

;Pump PUMP02's speed is set to 1.5 at 16 hours into
;the simulation
LINK PUMP02 1.5 AT TIME 16

;Link 12 is closed at 10 am and opened at 8 pm
;throughout the simulation
LINK 12 CLOSED AT CLOCKTIME 10 AM
LINK 12 OPEN AT CLOCKTIME 8 PM

toolkit.rtf EPANET Programmer's Toolkit Page 25 of 74

[RULES]

Purpose:
Defines rule-based controls which modify links based on a combination of conditions.

Format: Each rule is a series of statements of the form:

RULE ruleID
IF condition_1
AND condition_2
OR condition_3
AND condition_4
etc.
THEN action_1
AND action_2
etc.
ELSE action_3
AND action_4
etc.
PRIORITY value

where:
ruleID = an ID label assigned to the rule
conditon_n = a condition clause
action_n = an action clause
priority = a priority value (e.g., a number from 1 to 5)

Remarks:
1. Only the RULE, IF and THEN portions of a rule are required; the other portions are

optional.
2. When mixing AND and OR clauses, the OR operator has higher precedence than AND,

i.e.,
IF A or B and C

is equivalent to
IF (A or B) and C.

If the interpretation was meant to be
IF A or (B and C)

then this can be expressed using two rules as in
IF A THEN ...
IF B and C THEN ...

3. The PRIORITY value is used to determine which rule applies when two or more rules
require that conflicting actions be taken on a link. A rule without a priority value always
has a lower priority than one with a value. For two rules with the same priority value, the
rule that appears first is given the higher priority.

Example:
[RULES]

RULE 1
IF TANK 1 LEVEL ABOVE 19.1
THEN PUMP 335 STATUS IS CLOSED
AND PIPE 330 STATUS IS OPEN

RULE 2

toolkit.rtf EPANET Programmer's Toolkit Page 26 of 74

IF SYSTEM CLOCKTIME >= 8 AM
AND SYSTEM CLOCKTIME < 6 PM
AND TANK 1 LEVEL BELOW 12
THEN PUMP 335 STATUS IS OPEN

RULE 3
IF SYSTEM CLOCKTIME >= 6 PM
OR SYSTEM CLOCKTIME < 8 AM
AND TANK 1 LEVEL BELOW 14
THEN PUMP 335 STATUS IS OPEN

Rule Condition Clauses

A condition clause in a Rule-Based Control takes the form of:

object id attribute relation value

where
object = a category of network object
id = the object's ID label
attribute = an attribute or property of the object
relation = a relational operator
value = an attribute value

Some example conditional clauses are:
JUNCTION 23 PRESSURE > 20
TANK T200 FILLTIME BELOW 3.5
LINK 44 STATUS IS OPEN
SYSTEM DEMAND >= 1500
SYSTEM CLOCKTIME = 7:30 AM

Objects can be any of the following keywords:
NODE LINK SYSTEM
JUNCTION PIPE
RESERVOIR PUMP
TANK VALVE

When SYSTEM is used in a condition no ID is supplied.

The following attributes can be used with Node-type objects:
DEMAND
HEAD
PRESSURE

The following attributes can be used with Tanks:
LEVEL
FILLTIME (hours needed to fill a tank)
DRAINTIME (hours needed to empty a tank)

These attributes can be used with Link-Type objects:
FLOW
STATUS (OPEN, CLOSED, or ACTIVE)
SETTING (pump speed or valve setting)

toolkit.rtf EPANET Programmer's Toolkit Page 27 of 74

The SYSTEM object can use the following attributes:
DEMAND (total system demand)
TIME (hours from the start of the simulation expressed
either as a decimal number or in hours:minutes format))
CLOCKTIME (24-hour clock time with AM or PM appended)

Relation operators consist of the following:
= IS
<> NOT
< BELOW
> ABOVE
<=
>=

Rule Action Clauses

An action clause in a Rule-Based Control takes the form of:

object id STATUS/SETTING IS value

where

object = LINK, PIPE, PUMP, or VALVE keyword
id = the object's ID label
value = a status condition (OPEN or CLOSED),

pump speed setting, or valve setting

Some example action clauses are:
LINK 23 STATUS IS CLOSED
PUMP P100 SETTING IS 1.5
VALVE 123 SETTING IS 90

See the notes for the [STATUS] section for conventions used in specifying link status and
setting, particularly for control valves.

[QUALITY]

Purpose: Defines initial water quality at nodes.

Format: One line per node containing:
Node ID label
Initial quality

Remarks:
1. Quality is assumed to be zero for nodes not listed.
2. Quality represents concentration for chemicals, hours for water age, or percent for

source tracing.
3. The [QUALITY] section is optional.

toolkit.rtf EPANET Programmer's Toolkit Page 28 of 74

[REACTIONS]

Purpose: Defines parameters related to chemical reactions occurring in the network.

Formats:

ORDER BULK/WALL/TANK value
GLOBAL BULK/WALL value
BULK/WALL/TANK pipeID value
LIMITING POTENTIAL value
ROUGHNESS CORRELATION value

Remarks:
1. Remember to use positive numbers for growth reaction coefficients and negative

numbers for decay coefficients.
2. The time units for all reaction coefficients are 1/days.
3. All entries in this section are optional. Items offset by slashes (/) indicate allowable

choices.

ORDER is used to set the order of reactions occurring in the bulk fluid, at the pipe wall, or in
tanks, respectively. Values for wall reactions must be either 0 or 1. If not supplied the
default reaction order is 1.0.

GLOBAL is used to set a global value for all bulk reaction coefficients (pipes and tanks) or
for all pipe wall coefficients. The default value is 0.

BULK, WALL, and TANK are used to override the global reaction coefficients for specific
pipes and tanks.

LIMITING POTENTIAL specifies that reaction rates are proportional to the difference
between the current concentration and some limiting potential value.

ROUGHNESS CORRELATION will make all default pipe wall reaction coefficients be related to
pipe roughness in the following manner:

Head Loss Equation Roughness Correlation

Hazen-Williams F / C

Darcy-Weisbach F / log(e/D)

Chezy-Manning F*n

where F = roughness correlation, C = Hazen-Williams C-factor, e = Darcy-Weisbach roughness,
D = pipe diameter, and n = Chezy-Manning roughness coefficient. The default value computed this
way can be overridden for any pipe by using the WALL format to supply a specific value for the
pipe.

Example:

[REACTIONS]
ORDER WALL 0 ;Wall reactions are zero­order
GLOBAL BULK ­0.5 ;Global bulk decay coeff.
GLOBAL WALL ­1.0 ;Global wall decay coeff.
WALL P220 ­0.5 ;Pipe­specific wall coeffs.
WALL P244 ­0.7

toolkit.rtf EPANET Programmer's Toolkit Page 29 of 74

[SOURCES]

Purpose: Defines locations of water quality sources.

Format: One line for each water quality source containing:
Node ID label
Source type (CONCEN, MASS, FLOWPACED, or SETPOINT)
Baseline source strength
Time pattern ID (optional)

Remarks:
1. For MASS type sources, strength is measured in mass flow per minute. All other types

measure source strength in concentration units.
2. Source strength can be made to vary over time by specifying a time pattern.
3. A CONCEN source:

represents the concentration of any external source inflow to the node
applies only when the node has a net negative demand (water enters the network at
the node)
if the node is a junction, reported concentration is the result of mixing the source
flow and inflow from the rest of the network
if the node is a reservoir, the reported concentration is the source concentration
if the node is a tank, the reported concentration is the internal concentration of the tank
is best used for nodes that represent source water supplies or treatment works (e.g.,
reservoirs or nodes assigned a negative demand)
do not use at storage tanks with simultaneous inflow/outflow.

4. A MASS, FLOWPACED, or SETPOINT source:
represents a booster source, where the substance is injected directly into the
network regardless of what the demand at the node is
affects water leaving the node to the rest of the network in the following way:
- a MASS booster adds a fixed mass flow to that resulting from inflow to the node
- a FLOWPACED booster adds a fixed concentration to the resultant inflow

concentration at the node
- a SETPOINT booster fixes the concentration of any flow leaving the node (as

long as the concentration resulting from the inflows is below the setpoint)
the reported concentration at a junction or reservoir booster source is the
concentration that results after the boosting is applied; the reported concentration for
a tank with a booster source is the internal concentration of the tank
is best used to model direct injection of a tracer or disinfectant into the network or to
model a contaminant intrusion.

5. A [SOURCES] section is not needed for simulating water age or source tracing.

Example:
[SOURCES]
;Node Type Strength Pattern
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
 N1 CONCEN 1.2 Pat1 ;Concentration varies with time
 N44 MASS 12 ;Constant mass injection

toolkit.rtf EPANET Programmer's Toolkit Page 30 of 74

[MIXING]

Purpose: Identifies the model that governs mixing within storage tanks.

Format: One line per tank containing:
Tank ID label
Mixing model (MIXED, 2COMP, FIFO, or LIFO)
Compartment volume (fraction)

Remarks:
1. Mixing models include:

Completely Mixed (MIXED)
Two-Compartment Mixing (2COMP)
Plug Flow (FIFO)
Stacked Plug Flow (LIFO)

2. The compartment volume parameter only applies to the two-compartment model and
represents the fraction of the total tank volume devoted to the inlet/outlet compartment.

3. The [MIXING] section is optional. Tanks not described in this section are assumed to
be completely mixed.

Example:
[MIXING]
;Tank Model
;­­­­­­­­­­­­­­­­­­­­­­­
T12 LIFO
T23 2COMP 0.2

[OPTIONS]

Purpose: Defines various simulation options.

Formats:

UNITS CFS/GPM/MGD/IMGD/AFD/
 LPS/LPM/MLD/CMH/CMD
HEADLOSS H­W/D­W/C­M
HYDRAULICS USE/SAVE filename
QUALITY NONE/CHEMICAL/AGE/TRACE id
VISCOSITY value
DIFFUSIVITY value
SPECIFIC GRAVITY value
TRIALS value
ACCURACY value
UNBALANCED STOP/CONTINUE/CONTINUE n
PATTERN id
DEMAND MULTIPLIER value
EMITTER EXPONENT value
TOLERANCE value
MAP filename

UNITS sets the units in which flow rates are expressed where:

toolkit.rtf EPANET Programmer's Toolkit Page 31 of 74

CFS = cubic feet per second

GPM = gallons per minute

MGD = million gallons per day

IMGD = Imperial MGD

AFD = acre-feet per day

LPS = liters per second

LPM = liters per minute

MLD = million liters per day

CMH = cubic meters per hour

CMD = cubic meters per day

For CFS, GPM, MGD,
IMGD, and AFD other
input quantities are
expressed in US
Customary Units. If
flow units are in liters
or cubic meters then
Metric Units must be
used for all other input
quantities as well. (See
Units of Measurement).
The default flow units
are GPM.

HEADLOSS selects a formula to use for computing head loss for flow through a pipe. The
choices are the Hazen-Williams (H­W), Darcy-Weisbach (D­W), or Chezy-Manning (C­M)
formulas. The default is H­W.

The HYDRAULICS option allows you to either SAVE the current hydraulics solution to a file or
USE a previously saved hydraulics solution. This is useful when studying factors that only
affect water quality behavior. If the file name supplied contains any spaces then the name
must be placed between double quotes.

QUALITY selects the type of water quality analysis to perform. The choices are NONE,
CHEMICAL, AGE, and TRACE. In place of CHEMICAL the actual name of the chemical can be
used followed by its concentration units (e.g., CHLORINE mg/L). If TRACE is selected it
must be followed by the ID label of the node being traced. The default selection is NONE (no
water quality analysis).

VISCOSITY is the kinematic viscosity of the fluid being modeled relative to that of water at
20 deg. C (1.0 centistoke). The default value is 1.0.

DIFFUSIVITY is the molecular diffusivity of the chemical being analyzed relative to that of
chlorine in water. The default value is 1.0. Diffusivity is only used when mass transfer
limitations are considered in pipe wall reactions. A value of 0 will cause EPANET to ignore
mass transfer limitations.

SPECIFIC GRAVITY is the ratio of the density of the fluid being modeled to that of water at
4 deg. C (unitless).

TRIALS are the maximum number of trials used to solve network hydraulics at each
hydraulic time step of a simulation. The default is 40.

ACCURACY prescribes the convergence criterion that determines when a hydraulic solution
has been reached. The trials end when the sum of all flow changes from the previous
solution divided by the total flow in all links is less than this number. The default is 0.001.

UNBALANCED determines what happens if a hydraulic solution cannot be reached within the
prescribed number of TRIALS at some hydraulic time step into the simulation. "STOP" will
halt the entire analysis at that point. "CONTINUE" will continue the analysis with a warning
message issued. "CONTINUE n" will continue the search for a solution for another "n" trials

toolkit.rtf EPANET Programmer's Toolkit Page 32 of 74

with the status of all links held fixed at their current settings. The simulation will be
continued at this point with a message issued about whether convergence was achieved or
not. The default choice is "STOP".

PATTERN provides the ID label of a default demand pattern to be applied to all junctions
where no demand pattern was specified. If no such pattern exists in the [PATTERNS]
section then by default the pattern consists of a single multiplier equal to 1.0. If this option
is not used, then the global default demand pattern has a label of "1".

The DEMAND MULTIPLIER is used to adjust the values of baseline demands for all
junctions and all demand categories. For example, a value of 2 doubles all baseline
demands, while a value of 0.5 would halve them. The default value is 1.0.
EMITTER EXPONENT specifies the power to which the pressure at a junction is raised when
computing the flow issuing from an emitter. The default is 0.5.

TOLERANCE is the difference in water quality level below which we can say that one parcel
of water is essentially the same as another. The default is 0.01 for all types of quality
analyses (chemical, age (measured in hours), or source tracing (measured in percent)).

MAP is used to supply the name of a file containing coordinates of the network's nodes so
that a map of the network can be drawn. It is not used for any hydraulic or water quality
computations.

Remarks:
1. All options assume their default values if not explicitly specified in this section.
2. Items offset by slashes (/) indicate allowable choices.

Example:
[OPTIONS]
UNITS CFS
HEADLOSS D­W
QUALITY TRACE Tank23
UNBALANCED CONTINUE 10

[TIMES]

Purpose: Defines various time step parameters used in the simulation.

Formats:

DURATION value (units)
HYDRAULIC TIMESTEP value (units)
QUALITY TIMESTEP value (units)
RULE TIMESTEP value (units)
PATTERN TIMESTEP value (units)
PATTERN START value (units)
REPORT TIMESTEP value (units)
REPORT START value (units)
START CLOCKTIME value (AM/PM)
STATISTIC NONE/AVERAGED/
 MINIMUM/MAXIMUM/
 RANGE

toolkit.rtf EPANET Programmer's Toolkit Page 33 of 74

Remarks:
1. Units can be SECONDS (SEC), MINUTES (MIN), HOURS, or DAYS. The default is

hours.
2. If no units are supplied, then time values can be expressed in either decimal hours or in

hours:minutes notation.
3. All entries in the [TIMES] section are optional. Items offset by slashes (/) indicate

allowable choices.

DURATION is the duration of the simulation. Use 0 to run a single period snapshot analysis.
The default is 0.

HYDRAULIC TIMESTEP determines how often a new hydraulic state of the network is
computed. If greater than either the PATTERN or REPORT time step it will be automatically
reduced. The default is 1 hour.

QUALITY TIMESTEP is the time step used to track changes in water quality throughout the
network. The default is 1/10 of the hydraulic time step.

RULE TIMESTEP is the time step used to evaluate Rule-Based controls. If supplied, it
should be some fraction of the Hydraulic Timestep. If not supplied, the default value is 1/10
of the Hydraulic Timestep.

PATTERN TIMESTEP is the interval between time periods in all time patterns. The default is 1 hour.

PATTERN START is the time offset at which all patterns will start. For example, a value of 6
hours would start the simulation with each pattern in the time period that corresponds to
hour 6. The default is 0.

REPORT TIMESTEP sets the time interval between which output results are reported. The
default is 1 hour.

REPORT START is the length of time into the simulation at which output results begin to be
reported. The default is 0.

START CLOCKTIME is the time of day (e.g., 3:00 PM) at which the simulation begins. The
default is 12:00 AM midnight.

STATISTIC determines the type statistical post-processing to apply to the time series of
analysis results before they are reported. The choices are:

NONE no post-processing (the default)
AVERAGED report time-averaged values
MINIMUM report minimum values
MAXIMUM report maximum values
RANGE report the range (maximum - minimum) of values

Example:
[TIMES]
DURATION 240 HOURS
QUALITY TIMESTEP 3 MIN
QUALITY TIMESTEP 0:03
REPORT START 120
START CLOCKTIME 6:00 AM

toolkit.rtf EPANET Programmer's Toolkit Page 34 of 74

[REPORT]

Purpose: Describes the contents of the output report produced from a simulation.

Formats:

PAGESIZE value
FILE filename
STATUS YES/NO/FULL
SUMMARY YES/NO
MESSAGES YES/NO
ENERGY YES/NO
NODES NONE/ALL/node1 node2 ...
LINKS NONE/ALL/link1 link2 ...
variable YES/NO
variable BELOW/ABOVE/PRECISION value

Remarks:
1. All options assume their default values if not explicitly specified in this section.
2. Items offset by slashes (/) indicate allowable choices.
3. The default is to not report on any nodes or links, so a NODES or LINKS option must be

supplied if you wish to report results for these items.

PAGESIZE sets the number of lines written per page of the output report. The default is 0,
meaning that no line limit per page is in effect.

FILE supplies the name of a file to which the output report will be written. If the file name
contains spaces then it must be surrounded by double quotes. If not supplied then the
Report file, as specified in the second parameter of the ENopen (or ENepanet) function will
be used.

STATUS determines whether hydraulic status messages are written to the Report file. If YES
is selected the messages will identify those network components that change status during
each time step of the simulation. If FULL is selected, then convergence information will also
be included from each trial of each hydraulic analysis. This level of detail is only useful for
de-bugging networks that become hydraulically unbalanced. The default is NO.

SUMMARY determines whether a summary table of number of network components and key
analysis options is generated. The default is YES.

MESSAGES determines whether error and warning messages generated during a
hydraulic/water quality analysis are written to the Report file. The default is YES.

ENERGY determines if a table reporting average energy usage and cost for each pump is
provided. The default is NO.

NODES identifies which nodes will be reported on. You can either list individual node ID
labels or use the keywords NONE or ALL. Additional NODES lines can be used to continue
the list. The default is NONE.

LINKS identifies which links will be reported on. You can either list individual link ID labels
or use the keywords NONE or ALL. Additional LINKS lines can be used to continue the list.
The default is NONE.

toolkit.rtf EPANET Programmer's Toolkit Page 35 of 74

This reporting option is used to identify which variables are reported on, how many decimal
places are displayed, and what kind of filtering should be used to limit output reporting.
Node variables that can be reported on include:

Elevation
Demand
Head
Pressure
Quality

Link variables include:
Length
Diameter
Flow
Velocity
Headloss
LinkQuality
LinkStatus
Setting (Roughness for pipes, speed for pumps, pressure/flow setting for valves)
Reaction (reaction rate)
F­Factor (friction factor)

The default reporting variables are Demand, Head, Pressure, and Quality for nodes and
Flow, Velocity, and Headloss for links. The default precision is two decimal places.

Example:
The following example reports on nodes N1, N2, N3, and N17 and all links with velocity
above 3.0. The standard node variables (Demand, Head, Pressure, and Quality) are
reported on while only Flow, Velocity, and F-Factor (friction factor) are displayed for links.

[REPORT]
NODES N1 N2 N3 N17
LINKS ALL
FLOW YES
VELOCITY PRECISION 4
F­FACTOR PRECISION 4
VELOCITY ABOVE 3.0

toolkit.rtf EPANET Programmer's Toolkit Page 36 of 74

6.3.2. Output File Format

The Toolkit uses an unformatted binary output file to store both hydraulic and water quality
results at uniform reporting intervals. Data written to the file is either 4-byte integers, 4-byte
floats, or fixed-size strings whose size is a multiple of 4 bytes. This allows the file to be
divided conveniently into 4-byte records. The file consists of four sections of the following
sizes in bytes:

Section Size in Bytes

Prolog 852 + 20*Nnodes + 36*Nlinks + 8*Ntanks

Energy Use 28*Npumps + 4

Dynamic Results (16*Nnodes + 32*Nlinks)*Nperiods

Epilog 28

where

Nnodes = number of nodes (junctions + reservoirs + tanks)
Nlinks = number of links (pipes + pumps + valves)
Ntanks = number of tanks and reservoirs
Npumps = number of pumps
Nperiods = number of reporting periods

and all of these counts are themselves written to the file's prolog or epilog sections.

Output File - Prolog

The prolog section of the binary Output File contains the following data:

Item Type Number of Bytes

Magic Number (= 516114521) Integer 4

Version (= 200) Integer 4

Number of Nodes
(Junctions + Reservoirs + Tanks)

Integer 4

Number of Reservoirs & Tanks Integer 4

Number of Links
(Pipes + Pumps + Valves)

Integer 4

Number of Pumps Integer 4

Number of Valves Integer 4

Water Quality Option
 0 = none
 1 = chemical
 2 = age
 3 = source trace

Integer 4

Index of Node for Source Tracing Integer 4

toolkit.rtf EPANET Programmer's Toolkit Page 37 of 74

Flow Units Option
 0 = cfs
 1 = gpm
 2 = mgd
 3 = Imperial mgd
 4 = acre-ft/day
 5 = liters/second
 6 = liters/minute
 7 = megaliters/day
 8 = cubic meters/hour
 9 = cubic meters/day

Integer 4

Pressure Units Option
 0 = psi
 1 = meters
 2 = kPa

Integer 4

Time Statistics Flag
 0 = none (report time series)
 1 = report time-averaged values
 2 = report minimum values
 3 = report maximum values
 4 = report ranges

Integer 4

Reporting Start Time (seconds) Integer 4

Reporting Time Step (seconds) Integer 4

Simulation Duration (seconds) Integer 4

Problem Title (1st line) Char 80

Problem Title (2nd line) Char 80

Problem Title (3rd line) Char 80

Name of Input File Char 260

Name of Report File Char 260

Name of Chemical Char 16

Chemical Concentration Units Char 16

ID String of Each Node Char 16*Nnodes

ID String of Each Link Char 16*Nlinks

Index of Head Node of Each Link Integer 4*Nlinks

Index of Tail Node of Each Link Integer 4*Nlinks

Type Code of Each Link
 0 = Pipe with CV
 1 = Pipe
 2 = Pump
 3 = PRV
 4 = PSV
 5 = PBV
 6 = FCV
 7 = TCV
 8 = GPV

Integer 4*Nlinks

Node Index of Each Tank Integer 4*Ntanks

toolkit.rtf EPANET Programmer's Toolkit Page 38 of 74

Cross-Sectional Area of Each Tank
(value of 0 denotes a Reservoir)

Float 4*Ntanks

Elevation of Each Node Float 4*Nnodes

Length of Each Link Float 4*Nlinks

Diameter of Each Link Float 4*Nlinks

Output File - Energy Use

The Energy Use section of the Output File contains the following data:

Item Type # Bytes

Repeated for Each Pump:

Pump Index in list of links Integer 4

Pump Utilization (%) Float 4

Average Efficiency (%) Float 4

Average kwatts/MGal (or kwatts/cu m) Float 4

Average kwatts Float 4

Peak kwatts Float 4

Average Cost per Day Float 4

Peak Demand Cost Float 4

Output File - Dynamic Results

The Dynamic Results section of the binary Output File contains the following set of data for
each reporting period (the reporting time step is written to the Output File's prolog section
and the number of such steps is written to the epilog section):

Item Type Number of Bytes

Demand at Each Node Float 4*Nnodes

Head (Grade) at Each Node Float 4*Nnodes

Pressure at Each Node Float 4*Nnodes

Water Quality at Each Node Float 4*Nnodes

Flow in Each Link
(negative for reverse flow)

Float 4*Nlinks

Velocity in Each Link Float 4*Nlinks

Headloss per 1000 Units of Length for
Each Link (Total head for pumps and
head loss for valves)

Float 4*Nlinks

Avg. Water Quality in Each Link Float 4*Nlinks

toolkit.rtf EPANET Programmer's Toolkit Page 39 of 74

Status Code for Each Link
0 = closed (max. head exceeded)
1 = temporarily closed
2 = closed
3 = open
4 = active (partially open)
5 = open (max. flow exceeded)
6 = open (flow setting not met)
7 = open (pressure setting not met)

Float 4*Nlinks

Setting for Each Link
Roughness coeff. for Pipes,
Speed for Pumps
Setting for Valves

 Float 4*Nlinks

Reaction Rate for Each Link
(mass/L/day)

Float 4*Nlinks

Friction Factor for Each Link Float 4*Nlinks

Output File - Epilog

The Epilog section of the binary Output File contains the following data:

Item Type # Bytes

Average bulk reaction rate
(mass/hr)

Float 4

Average wall reaction rate
(mass/hr)

Float 4

Average tank reaction rate
(mass/hr)

Float 4

Average source inflow rate
(mass/hr)

Float 4

Number of Reporting Periods Integer 4

Warning Flag
0 = no warnings
1 = warnings were generated

Integer 4

Magic Number (= 516114521) Integer 4

toolkit.rtf EPANET Programmer's Toolkit Page 40 of 74

6.3.3. Example Input File

The following contains excerpts from an example EPANET Input file, using the formats
described in Input File Format:

[TITLE]
Example EPANET Input File

[JUNCTIONS]
;ID Elev.
;­­­­­­­­­­­
J1 100
J2 120
< etc. >

[RESERVOIRS]
;ID Head
;­­­­­­­­­­­
R1 55

[TANKS]
; Init. Min. Max.
;ID Elev. Level Level Level Diam.
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
T1 200 12 2 20 120

[PIPES]
; Minor
;ID Node1 Node2 Length Diam. Rough. Loss Status
;­­­
P1 J1 J2 1200 12 100 0 Open
P2 J2 J3 2400 16 100 0 Open
P3 J3 J20 400 8 100 2.4 CV
< etc. >

[PUMPS]
;ID Node1 Node2 Characteristics
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
PMP1 R1 J1 HEAD CURVE1

[DEMANDS]
; Base Demand
;Junction Demand Pattern Category
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
J1 50 PAT1 ;Domestic
J1 100 PAT2 ;Hospital
J2 55 PAT1 ;Domestic
< etc. >

[PATTERNS]
;ID Multipliers
;­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
PAT1 1.1 1.2 0.95 0.87 0.65 0.77
PAT1 0.83 1.0 1.1 1.4 1.2 1.1

toolkit.rtf EPANET Programmer's Toolkit Page 41 of 74

PAT2 1.0
< etc. >

[CURVES]
;ID X­value Y­value
;­­­­­­­­­­­­­­­­­­­­­­­
CURVE1 0 120
CURVE1 150 60
CURVE1 500 0

[REACTIONS]
GLOBAL BULK ­0.5

[SOURCES]
;Node Type Strength
;­­­­­­­­­­­­­­­­­­­­
R1 CONCEN 1.0

[TIMES]
DURATION 24 HRS
PATTERN TIMESTEP 2 HRS

[OPTIONS]
QUALITY Chlorine mg/L

[END]

toolkit.rtf EPANET Programmer's Toolkit Page 42 of 74

6.4. Units of Measurement

NOTE: US Customary units apply when CFS, GPM, MGD, IMGD, or AFD are chosen as
flow units. SI Metric units apply when flow units are expressed using either liters or cubic
meters. See [OPTIONS] for how to select flow units.

Parameter US Customary SI Metric

Concentration mg/L or ug/L mg/L or ug/L

Demand (see Flow units) (see Flow units)

Diameter (Pipes) inches millimeters

Diameter (Tanks) feet meters

Efficiency percent percent

Elevation feet meters

Emitter Coeff. flow units @ 1 psi drop flow units @ 1 meter drop

Energy kwatt - hours kwatt - hours

Flow CFS (cubic feet / sec)

GPM (gallons / min)

MGD (million gal / day)

IMGD (Imperial MGD)

AFD (acre-feet / day)

LPS (liters / sec)

LPM (liters / min)

MLD (megaliters / day)

CMH (cubic meters / hr)

CMD (cubic meters / day)

Friction Factor unitless unitless

Head feet meters

Length feet meters

Minor Loss Coeff. unitless unitless

Power horsepower kwatts

Pressure psi meters

Reaction Coeff. (Bulk) 1/day (1st-order) 1/day (1st-order)

Reaction Coeff. (Wall) mass/sq-ft/day (0-order)

ft/day (1st-order)

mass/sq-m/day (0-order)

meters/day (1st-order)

Roughness Coeff. millifeet (Darcy-Weisbach)

unitless otherwise

mm (Darcy-Weisbach)

unitless otherwise

Source Mass Injection mass/minute mass/minute

Velocity ft/sec meters/sec

Volume cubic feet cubic meters

Water Age hours hours

toolkit.rtf EPANET Programmer's Toolkit Page 43 of 74

ENepanet

int ENepanet(char* f1, char* f2, char* f3, void (*) (vfunc))

Description:

Runs a complete EPANET simulation.

Arguments:

f1: name of the input file
f2: name of an output report file,
f3: name of an optional binary output file
vfunc: pointer to a user-supplied function which accepts a character

string as its argument.

Returns:

Returns an error code.

Notes:

ENepanet is a stand-alone function and does not interact with any of the other functions
in the toolkit.

If there is no need to save EPANET's binary output file then f3 can be an empty string ("").

The vfunc function pointer allows the calling program to display a progress message
generated by EPANET during its computations. A typical function for a console
application might look as follows:

void writecon(char *s)
{
 puts(s);
}

and somewhere in the calling program the following declarations would appear:

void (* vfunc) (char *);
vfunc = writecon;
ENepanet(f1,f2,f3,vfunc);

If such a function is not desired then this argument should be NULL (NIL for
Delphi/Pascal, VBNULLSTRING for Visual Basic).

ENepanet is used mainly to link the EPANET engine to third-party user interfaces that
build network input files and display the results of a network analysis.

toolkit.rtf EPANET Programmer's Toolkit Page 44 of 74

ENopen

int ENopen(char* f1, char* f2, char* f3)

Description: Opens the Toolkit to analyze a particular distribution system.

Arguments:

f1: name of an EPANET Input file
f2: name of an output Report file
f3: name of an optional binary Output file.

Returns: Returns an error code.

Notes:

If there is no need to save EPANET's binary Output file then f3 can be an empty string ("").

If f2 is an empty string, then reporting will be made to the operating system's stdout
device (which is usually the console).

ENopen must be called before any of the other toolkit functions (except ENepanet) are used.

See Also: ENclose

ENclose

int ENclose(void)

Description: Closes down the Toolkit system (including all files being processed).

Returns: Returns an error code.

Notes:

ENclose must be called when all processing has been completed, even if an error
condition was encountered.

See Also: ENopen

ENgetnodeindex

int ENgetnodeindex(char* id, int* index)

Description: Retrieves the index of a node with a specified ID.

Arguments:

toolkit.rtf EPANET Programmer's Toolkit Page 45 of 74

id: node ID label
index: node index

Returns: Returns an error code.

Notes: Node indexes are consecutive integers starting from 1.

See Also: ENgetnodeid

ENgetnodeid

int ENgetnodeid(int index, char* id)

Description: Retrieves the ID label of a node with a specified index.

Arguments:

index: node index
id: ID label of node

Returns: Returns an error code.

Notes:

The ID label string should be sized to hold at least 15 characters.
Node indexes are consecutive integers starting from 1.

See Also: ENgetnodeindex

ENgetnodetype

int ENgetnodetype(int index, int* typecode)

Description: Retrieves the node-type code for a specific node.

Arguments:

index: node index
typecode: node-type code (see below)

Returns: Returns an error code.

Notes: Node indexes are consecutive integers starting from 1. Node type codes
consist of the following constants:

EN_JUNCTION 0 Junction node
EN_RESERVOIR 1 Reservoir node
EN_TANK 2 Tank node

toolkit.rtf EPANET Programmer's Toolkit Page 46 of 74

ENgetnodevalue

int ENgetnodevalue(int index, int paramcode, float* value)

Description: Retrieves the value of a specific link parameter.

Arguments:

index: node index
paramcode: parameter code (see below)
value: parameter value

Returns: Returns an error code.

Notes: Node indexes are consecutive integers starting from 1.

Node parameter codes consist of the following constants:
EN_ELEVATION 0 Elevation
EN_BASEDEMAND 1 Base demand
EN_PATTERN 2 Demand pattern index
EN_EMITTER 3 Emitter coeff.
EN_INITQUAL 4 Initial quality
EN_SOURCEQUAL 5 Source quality
EN_SOURCEPAT 6 Source pattern index
EN_SOURCETYPE 7 Source type

(See note below)
EN_TANKLEVEL 8 Initial water level in tank
EN_DEMAND 9 Actual demand
EN_HEAD 10 Hydraulic head
EN_PRESSURE 11 Pressure
EN_QUALITY 12 Actual quality
EN_SOURCEMASS 13 Mass flow rate per minute of a chemical source

Parameters 9 ­ 13 (EN_DEMAND through EN_SOURCEMASS) are computed values. The
others are input design parameters.

Source types are identified with the following constants:

EN_CONCEN 0
EN_MASS 1
EN_SETPOINT 2
EN_FLOWPACED 3

See [SOURCES] for a description of these source types.

Values are returned in units which depend on the units used for flow rate in the EPANET
input file (see Units of Measurement).

toolkit.rtf EPANET Programmer's Toolkit Page 47 of 74

ENgetlinkindex

int ENgetlinkindex(char* id, int* index)

Description: Retrieves the index of a link with a specified ID.

Arguments:

id: link ID label
index: link index

Returns: Returns an error code.

Notes: Link indexes are consecutive integers starting from 1.

See Also: ENgetlinkid

ENgetlinkid

int ENgetlinkid(int index, char* id)

Description: Retrieves the ID label of a link with a specified index.

Arguments:

index: link index
id: ID label of link

Returns: Returns an error code.

Notes:

The ID label string should be sized to hold at least 15 characters.

Link indexes are consecutive integers starting from 1.

See Also: ENgetlinkindex

ENgetlinktype

int ENgetlinktype(int index, int* typecode)

Description: Retrieves the link-type code for a specific link.

Arguments:

index: link index
typecode: link-type code (see below)

toolkit.rtf EPANET Programmer's Toolkit Page 48 of 74

Returns: Returns an error code.

Notes:
Link indexes are consecutive integers starting from 1.

Link type codes consist of the following constants:

EN_CVPIPE 0 Pipe with Check Valve
EN_PIPE 1 Pipe
EN_PUMP 2 Pump
EN_PRV 3 Pressure Reducing Valve
EN_PSV 4 Pressure Sustaining Valve
EN_PBV 5 Pressure Breaker Valve
EN_FCV 6 Flow Control Valve
EN_TCV 7 Throttle Control Valve
EN_GPV 8 General Purpose Valve

See Also: ENgetlinkindex

ENgetlinknodes

int ENgetlinknodes(int index, int* fromnode, int* tonode)

Description: Retrieves the indexes of the end nodes of a specified link.

Arguments:

index: link index
fromnode: index of node at start of link
tonode: index of node at end of link

Returns: Returns an error code.

Notes:

Node and link indexes are consecutive integers starting from 1.
The From and To nodes are as defined for the link in the EPANET input file. The actual
direction of flow in the link is not considered.

See Also: ENgetlinkindex

ENgetlinkvalue

int ENgetlinkvalue(int index, int paramcode, float* value)

Description: Retrieves the value of a specific link parameter.

Arguments:

toolkit.rtf EPANET Programmer's Toolkit Page 49 of 74

index: link index
paramcode: parameter code (see below)
value: parameter value

Returns: Returns an error code.

Notes:
Link indexes are consecutive integers starting from 1.

Link parameter codes consist of the following constants:

EN_DIAMETER 0 Diameter
EN_LENGTH 1 Length
EN_ROUGHNESS 2 Roughness coeff.
EN_MINORLOSS 3 Minor loss coeff.
EN_INITSTATUS 4 Initial link status (0 = closed, 1 = open)
EN_INITSETTING 5 Initial pipe roughness

Initial pump speed
Initial valve setting

EN_KBULK 6 Bulk reaction coeff.
EN_KWALL 7 Wall reaction coeff.
EN_FLOW 8 Flow rate
EN_VELOCITY 9 Flow velocity
EN_HEADLOSS 10 Head loss
EN_STATUS 11 Actual link status (0 = closed, 1 = open)
EN_SETTING 12 Pipe roughness

Actual pump speed
Actual valve setting

EN_ENERGY 13 Energy expended in kwatts

Parameters 8 ­ 13 (EN_FLOW through EN_ENERGY) are computed values. The others
are design parameters.

Flow rate is positive if the direction of flow is from the designated start node of the link to
its designated end node, and negative otherwise.

Values are returned in units which depend on the units used for flow rate in the EPANET
input file (see Units of Measurement).

See Also: ENgetlinkindex

ENgetpatternid

int ENgetpatternid(int index, char* id)

Description: Retrieves the ID label of a particular time pattern.

Arguments:

index: pattern index
id: ID label of pattern

toolkit.rtf EPANET Programmer's Toolkit Page 50 of 74

Returns: Returns an error code.

Notes:

The ID label string should be sized to hold at least 15 characters.

Pattern indexes are consecutive integers starting from 1.

ENgetpatternindex

int ENgetpatternindex(char* id, int* index)

Description: Retrieves the index of a particular time pattern.

Arguments:

id: pattern ID label
index: pattern index

Returns: Returns an error code.

Notes: Pattern indexes are consecutive integers starting from 1.

ENgetpatternlen

int ENgetpatternlen(int index, int* len)

Description: Retrieves the number of time periods in a specific time pattern.

Arguments:

index: pattern index
len: number of time periods in the pattern

Returns: Returns an error code.

Notes: Pattern indexes are consecutive integers starting from 1.

ENgetpatternvalue

int ENgetpatternvalue(int index, int period, float* value)

Description: Retrieves the multiplier factor for a specific time period in a time pattern.

toolkit.rtf EPANET Programmer's Toolkit Page 51 of 74

Arguments:

index: time pattern index
period: period within time pattern
value: multiplier factor for the period

Returns: Returns an error code.

Notes: Pattern indexes and periods are consecutive integers starting from 1.

See Also: ENgetpatternindex, ENgetpatternlen, ENsetpatternvalue

ENgetcontrol

int ENgetcontrol(int cindex, int* ctype, int* lindex,
float* setting, int* nindex, float* level)

Description:

Retrieves the parameters of a simple control statement. The index of the control is
specified in cindex and the remaining arguments return the control's parameters.

Arguments:

cindex: control statement index
ctype: control type code
lindex: index of link being controlled
setting: value of the control setting
nindex: index of controlling node
level: value of controlling water level or pressure for level controls or of

time of control action (in seconds) for time-based controls

Returns: Returns an error code.

Notes:

Controls are indexed starting from 1 in the order in which they were entered into the
[CONTROLS] section of the EPANET input file.

Control type codes consist of the following:
0 (Low Level Control) applies when tank level or node pressure

drops below specified level
1 (High Level Control) applies when tank level or node pressure rises

above specified level
2 (Timer Control) applies at specific time into simulation
3 (Time-of-Day Control) applies at specific time of day

For pipes, a setting of 0 means the pipe is closed and 1 means it is open. For a
pump, the setting contains the pump's speed, with 0 meaning the pump is closed and
1 meaning it is open at its normal speed. For a valve, the setting refers to the valve's
pressure, flow, or loss coefficient value, depending on valve type

toolkit.rtf EPANET Programmer's Toolkit Page 52 of 74

For Timer or Time-of-Day controls the nindex parameter equals 0.

See ENsetcontrol for an example of using this function.

ENgetcount

int ENgetcount(int countcode,
int*count)

Description:

Retrieves the number of network components of a specified type.

Arguments:

countcode: component code (see below)
count: number of countcode components in the network

Returns: Returns an error code.

Notes:

Component codes consist of the following:

EN_NODECOUNT 0 Nodes
EN_TANKCOUNT 1 Reservoirs and tank nodes
EN_LINKCOUNT 2 Links
EN_PATCOUNT 3 Time patterns
EN_CURVECOUNT 4 Curves
EN_CONTROLCOUNT 5 Simple controls

The number of junctions in a network equals the number of nodes minus the number of
tanks and reservoirs.

There is no facility within the Toolkit to add to or delete from the components described
in the Input file.

ENgetflowunits

int ENgetflowunits(int* unitscode)

Description:

Retrieves a code number indicating the units used to express all flow rates.

Arguments:

unitscode: value of a flow units code number (see below).

Returns: Returns an error code.

toolkit.rtf EPANET Programmer's Toolkit Page 53 of 74

Notes: Flow units codes are as follows:

0 = EN_CFS cubic feet per second
1 = EN_GPM gallons per minute
2 = EN_MGD million gallons per day
3 = EN_IMGD Imperial mgd
4 = EN_AFD acre-feet per day
5 = EN_LPS liters per second
6 = EN_LPM liters per minute
7 = EN_MLD million liters per day
8 = EN_CMH cubic meters per hour
9 = EN_CMD cubic meters per day

Flow units are specified in the [OPTIONS] section of the EPANET Input file.

Flow units in liters or cubic meters implies that metric units are used for all other
quantities in addition to flow. Otherwise US units are employed. (See Units of
Measurement).

ENgettimeparam

int ENgettimeparam(int paramcode, long* timevalue)

Description: Retrieves the value of a specific analysis time parameter.

Arguments:

paramcode: time parameter code (see below)
timevalue: value of time parameter in seconds

Returns: Returns an error code.

Notes:

Time parameter codes consist of the following constants:
EN_DURATION 0 Simulation duration
EN_HYDSTEP 1 Hydraulic time step
EN_QUALSTEP 2 Water quality time step
EN_PATTERNSTEP 3 Time pattern time step
EN_PATTERNSTART 4 Time pattern start time
EN_REPORTSTEP 5 Reporting time step
EN_REPORTSTART 6 Report starting time
EN_RULESTEP 7 Time step for evaluating rule-based controls
EN_STATISTIC 8 Type of time series post-processing used:

0 = none
1 = averaged
2 = minimums
3 = maximums
4 = ranges

EN_PERIODS 9 Number of reporting periods saved to binary
output file

toolkit.rtf EPANET Programmer's Toolkit Page 54 of 74

ENgetqualtype

int ENgetqualtype(int* qualcode, int* tracenode)

Description: Retrieves the type of water quality analysis called for.

Arguments:

qualcode: water quality analysis code (see below)
tracenode: index of node traced in a source tracing analysis

Returns: Returns an error code.

Notes: Water quality analysis codes are as follows:

EN_NONE 0 No quality analysis
EN_CHEM 1 Chemical analysis
EN_AGE 2 Water age analysis
EN_TRACE 3 Source tracing

The tracenode value will be 0 when qualcode is not EN_TRACE.

See Also: ENsetqualtype

ENgetoption

int ENgetoption(int optioncode, float* value)

Description:

Retrieves the value of a particular analysis option.

Arguments:

optioncode: an option code (see below)
value: an option value

Returns: Returns an error code.

Notes: Option codes consist of the following constants:

EN_TRIALS 0
EN_ACCURACY 1
EN_TOLERANCE 2
EN_EMITEXPON 3
EN_DEMANDMULT 4

toolkit.rtf EPANET Programmer's Toolkit Page 55 of 74

ENgetversion

int ENgetversion(int* v)

Description: Retrieves the current version number of the Toolkit.

Arguments:

v: version number

Returns: Returns an error code (should always be 0).

Notes: The version number is a 5-digit integer that increases sequentially from
20001 with each new update of the Toolkit.

ENsetcontrol

int ENsetcontrol(int cindex, int ctype, int lindex,
float setting, int nindex, float level)

Description: Sets the parameters of a particular simple control statement.

Arguments:

cindex: control statement index
ctype: control type code
lindex: index of link being controlled
setting: value of the control setting
nindex: index of controlling node
level: value of controlling water level or pressure for level controls or of

time of control action (in seconds) for time-based controls

Returns: Returns an error code.

Notes:

Controls are indexed starting from 1 in the order in which they were entered into the
[CONTROLS] section of the EPANET input file.

Control type codes consist of the following:

EN_LOWLEVEL 0 Control applied when tank level or node pressure
drops below specified level

EN_HILEVEL 1 Control applied when tank level or node pressure
rises above specified level

EN_TIMER 2 Control applied at specific time into simulation
EN_TIMEOFDAY 3 Control applied at specific time of day

For pipes, a setting of 0 means the pipe is closed and 1 means it is open. For a
pump, the setting contains the pump's speed, with 0 meaning the pump is closed and
1 meaning it is open at its normal speed. For a valve, the setting refers to the valve's

toolkit.rtf EPANET Programmer's Toolkit Page 56 of 74

pressure, flow, or loss coefficient, depending on valve type.

For Timer or Time-of-Day controls set the nindex parameter to 0.

For level controls, if the controlling node nindex is a tank then the level parameter
should be a water level above the tank bottom (not an elevation). Otherwise level
should be a junction pressure.

To remove a control on a particular link, set the lindex parameter to 0. Values for the
other parameters in the function will be ignored.

Example:

This example uses ENgetcontrol and ENsetcontrol to change the low level setting on
the node that controls a link with index thelink to a new value newlevel.

ENgetcount(EN_CONTROLS, &numctrls);
for (i=1; i<=numctrls; i++)
{
 ENgetcontrol(i, &ctype, &lindex, &setting,
 &nindex, &level);
 if (ctype == EN_LOWLEVEL && lindex == thelink)
 {
 ENsetcontrol(i, ctype, lindex, setting,
 nindex, newlevel);
 break;
 }
}

See Also: ENgetcontrol

ENsetnodevalue

int ENsetnodevalue(int index, int paramcode, float value)

Description: Sets the value of a parameter for a specific node.

Arguments:

index: node index
paramcode: parameter code (see below)
value: parameter value

Returns: Returns an error code.

Notes: Node indexes are consecutive integers starting from 1.

Node parameter codes consist of the following constants:

toolkit.rtf EPANET Programmer's Toolkit Page 57 of 74

EN_ELEVATION 0 Elevation
EN_BASEDEMAND 1 Baseline demand
EN_PATTERN 2 Time pattern index
EN_EMITTER 3 Emitter coefficient
EN_INITQUAL 4 Initial quality
EN_SOURCEQUAL 5 Source quality
EN_SOURCEPAT 6 Source pattern
EN_SOURCETYPE 7 Source type (See note below)
EN_TANKLEVEL 8 Initial water level in tank

Source types are identified with the following constants:

EN_CONCEN 0
EN_MASS 1
EN_SETPOINT 2
EN_FLOWPACED 3

See [SOURCES] for a description of these source types.

Values are supplied in units which depend on the units used for flow rate in the EPANET
input file (see Units of Measurement).

ENsetlinkvalue

int ENsetlinkvalue(int index, int paramcode, float value)

Description: Sets the value of a parameter for a specific link.

Arguments:

index: link index
paramcode: parameter code (see below)
value: parameter value

Returns: Returns an error code.

Notes:

Link indexes are consecutive integers starting from 1.

Link parameter codes consist of the following constants:

EN_DIAMETER 0 Diameter
EN_LENGTH 1 Length
EN_ROUGHNESS 2 Roughness coeff.
EN_MINORLOSS 3 Minor loss coeff.
EN_INITSTATUS 4 Initial link status

(0 = closed, 1 = open)
EN_INITSETTING 5 Pipe roughness

Initial pump speed
Initial valve setting

EN_KBULK 6 Bulk reaction coeff.

toolkit.rtf EPANET Programmer's Toolkit Page 58 of 74

EN_KWALL 7 Wall reaction coeff.
EN_STATUS 11 Current pump or valve status

(0 = closed, 1 = open)
EN_SETTING 12 Current pump speed or valve setting

Values are supplied in units which depend on the units used for flow rate in the EPANET
input file (see Units of Measurement).

Use EN_INITSTATUS and EN_INITSETTING to set the design value for a link's status
or setting that exists prior to the start of a simulation. Use EN_STATUS and
EN_SETTING to change these values while a simulation is being run (within the ENrunH
- ENnextH loop).

If a control valve has its status explicitly set to OPEN or CLOSED, then to make it active
again during a simulation you must provide a new valve setting value using the
EN_SETTING parameter.

For pipes, either EN_ROUGHNESS or EN_INITSETTING can be used to change
roughness.

ENsetpattern

int ENsetpattern(int index, float* factors, int nfactors)

Description:

Sets all of the multiplier factors for a specific time pattern.

Arguments:

index: time pattern index
factors: multiplier factors for the entire pattern
nfactors: number of factors in the pattern

Returns: Returns an error code.

Notes:

Pattern indexes are consecutive integers starting from 1.

factors points to a zero-based array that contains nfactors elements.

Use this function to redefine (and resize) a time pattern all at once; use
ENsetpatternvalue to revise pattern factors in specific time periods of a pattern.

See Also: ENgetpatternindex, ENgetpatternlen, ENgetpatternvalue,
ENsetpatternvalue

toolkit.rtf EPANET Programmer's Toolkit Page 59 of 74

ENsetpatternvalue

int ENsetpatternvalue(int index, int period, float value)

Description: Sets the multiplier factor for a specific period within a time pattern.

Arguments:

index: time pattern index
period: period within time pattern
value: multiplier factor for the period

Returns: Returns an error code.

Notes:

Pattern indexes are consecutive integers starting from 1.

Use ENsetpattern to reset all of the factors in a time pattern.

See Also: ENgetpatternindex, ENgetpatternlen, ENgetpatternvalue,
ENsetpattern

ENsetqualtype

int ENsetqualtype(int qualcode, char* chemname, char* chemunits,
 char* tracenode)

Description: Sets the type of water quality analysis called for.

Arguments:

qualcode: water quality analysis code (see below)
chemname: name of the chemical being analyzed
chemunits: units that the chemical is measured in
tracenode: ID of node traced in a source tracing analysis

Returns: Returns an error code.

Notes: Water quality analysis codes are as follows:

EN_NONE 0 No quality analysis
EN_CHEM 1 Chemical analysis
EN_AGE 2 Water age analysis
EN_TRACE 3 Source tracing

Chemical name and units can be an empty string if the analysis is not for a chemical.
The same holds for the trace node if the analysis is not for source tracing.
Note that the trace node is specified by ID and not by index.

See Also: ENgetqualtype

toolkit.rtf EPANET Programmer's Toolkit Page 60 of 74

ENsettimeparam

int ENsettimeparam(int paramcode, long timevalue)

Description: Sets the value of a time parameter.

Arguments:
paramcode: time parameter code (see below)
timevalue: value of time parameter in seconds

Returns: Returns an error code.

Notes: Time parameter codes consist of the following constants:

EN_DURATION 0 Simulation duration
EN_HYDSTEP 1 Hydraulic time step
EN_QUALSTEP 2 Water quality time step
EN_PATTERNSTEP 3 Time pattern time step
EN_PATTERNSTART 4 Time pattern start time
EN_REPORTSTEP 5 Reporting time step
EN_REPORTSTART 6 Report starting time
EN_RULESTEP 7 Time step for evaluating rule-based controls
EN_STATISTIC 8 Type of time series post-processing to use:

EN_NONE (0) = none
EN_AVERAGE (1) = averaged
EN_MINIMUM (2) = minimums
EN_MAXIMUM (3) = maximums
EN_RANGE (4) = ranges

Do not change time parameters after calling ENinitH in a hydraulic analysis or
ENinitQ in a water quality analysis.

ENsetoption

int ENsetoption(int optioncode, float value)

Description: Sets the value of a particular analysis option.

Arguments:
optioncode: an option code (see below)
value: an option value

Returns: Returns an error code.

Notes: Option codes consist of the following constants:

EN_TRIALS 0
EN_ACCURACY 1
EN_TOLERANCE 2
EN_EMITEXPON 3
EN_DEMANDMULT 4

toolkit.rtf EPANET Programmer's Toolkit Page 61 of 74

ENsavehydfile

int ENsavehydfile(char* fname)

Description: Saves the current contents of the binary hydraulics file to a file.

Arguments:

fname: name of the file where the hydraulics results should be saved.

Returns: Returns an error code.

Notes:

Use this function to save the current set of hydraulics results to a file, either for post-
processing or to be used at a later time by calling the ENusehydfile function.

The hydraulics file contains nodal demands and heads and link flows, status, and
settings for all hydraulic time steps, even intermediate ones.

Before calling this function hydraulic results must have been generated and saved by
having called ENsolveH or the ENinitH - ENrunH - ENnextH sequence with the
saveflag parameter of ENinitH set to 1.

See Also: ENusehydfile, ENsolveH, ENinitH

ENusehydfile

int ENusehydfile(char* fname)

Description: Uses the contents of the specified file as the current binary hydraulics file.

Arguments:

fname: name of the file containing hydraulic analysis results for the current
network.

Returns: Returns an error code.

Notes:

Call this function to refuse a set of hydraulic analysis results saved previously. These
results are checked to see if they match the following the parameters associated with
the current network being analyzed: number of nodes, number of tanks and reservoirs,
number of links, number of pumps, number of valves, and simulation duration.

Do not call this function when the hydraulics analysis system is still opened (i.e.,
ENopenH has been called but ENcloseH has not).

See Also: ENsavehydfile

toolkit.rtf EPANET Programmer's Toolkit Page 62 of 74

ENsolveH

int ENsolveH(void)

Description:

Runs a complete hydraulic simulation with results for all time periods written to the
binary Hydraulics file.

Returns: Returns an error code.

Notes:

Use ENsolveH to generate a complete hydraulic solution which can stand alone or be
used as input to a water quality analysis. It can also be followed by calls to ENsaveH
and ENreport to write a report on hydraulic results to the report file. Do not use
ENopenH, ENinitH, ENrunH, ENnextH, and ENcloseH in conjunction with ENsolveH.

Example:

ENopen("net1.inp", "net1.rpt", "");
ENsolveH();
ENsolveQ();
ENreport();
ENclose();

ENopenH

int ENopenH(void)

Description: Opens the hydraulics analysis system.

Returns: Returns an error code.

Notes:

Call ENopenH prior to running the first hydraulic analysis using the ENinitH - ENrunH -
ENnextH sequence. Multiple analyses can be made before calling ENcloseH to close
the hydraulic analysis system.

Do not call this function if ENsolveH is being used to run a complete hydraulic analysis.

See Also: ENinitH, ENrunH, ENnextH, ENcloseH

toolkit.rtf EPANET Programmer's Toolkit Page 63 of 74

ENinitH

int ENinitH(int flag)

Description:

Initializes storage tank levels, link status and settings, and the simulation clock time prior
to running a hydraulic analysis.

Arguments:

flag: Two-digit flag indicating if hydraulic results will be saved to the
hydraulics file (rightmost digit) and if link flows should be re-initialized.

Returns: Returns an error code.

Notes:

Call ENinitH prior to running a hydraulic analysis using ENrunH and ENnextH.
ENopenH must have been called prior to calling ENinitH.
Do not call ENinitH if a complete hydraulic analysis is being made with a call to ENsolveH.
Values of flag have the following meanings:

00 do not re-initialize flows, do not save results to file
01 do not re-initialize flows, save results to file
10 re-initialize flows, do not save results to file
11 re-initialize flows, save results to file

Set flag to 1 (or 11) if you will be making a subsequent water quality run, using ENreport
to generate a report, or using ENsavehydfile to save the binary hydraulics file.

See Also: ENopenH, ENrunH, ENnextH, ENcloseH

ENrunH

int ENrunH(long* t)

Description:

Runs a single period hydraulic analysis, retrieving the current simulation clock time t.

Arguments:

t: current simulation clock time in seconds.

Returns: Returns an error code.

Notes:

Use ENrunH along with ENnextH in a do...while loop to analyze hydraulics in each
period of an extended period simulation. This process automatically updates the

toolkit.rtf EPANET Programmer's Toolkit Page 64 of 74

simulation clock time so treat t as a read-only variable.

 ENinitH must have been called prior to running the ENrunH - ENnextH loop.

See ENnextH for an example of using this function.

See Also: ENopenH, ENinitH, ENnextH, ENcloseH

ENnextH

int ENnextH(long* tstep)

Description:

Determines the length of time until the next hydraulic event occurs in an extended period
simulation.

Arguments:

tstep: time (in seconds) until next hydraulic event occurs or 0 if at the end of
the simulation period.

Returns: Returns an error code.

Notes:

This function is used in conjunction with ENrunH to perform an extended period
hydraulic analysis (see example below).

The value of tstep should be treated as a read-only variable. It is automatically
computed as the smaller of:

the time interval until the next hydraulic time step begins
the time interval until the next reporting time step begins
the time interval until the next change in demands occurs
the time interval until a tank becomes full or empty
the time interval until a control or rule fires

Example:

long t, tstep;
ENopenH();
ENinitH(0);
do {
 ENrunH(&t);
 /* Retrieve hydraulic results for time t */
 ENnextH(&tstep);
} while (tstep > 0);
ENcloseH();

See Also: ENopenH, ENinitH, ENrunH, ENcloseH, ENsettimeparam

toolkit.rtf EPANET Programmer's Toolkit Page 65 of 74

ENcloseH

int ENcloseH(void)

Description: Closes the hydraulic analysis system, freeing all allocated memory.

Returns: Returns an error code.

Notes: Call ENcloseH after all hydraulics analyses have been made using ENinitH
- ENrunH - ENnextH. Do not call this function if ENsolveH is being used.

See Also: ENopenH, ENinitH, ENrunH, ENnextH

ENsolveQ

int ENsolveQ(void)

Description: Runs a complete water quality simulation with results at uniform reporting
intervals written to EPANET's binary Output file.

Returns: Returns an error code.

Notes:

A hydraulic analysis must have been run and saved to the binary hydraulics file before
calling ENsolveQ. It can be followed by a call to ENreport to write a report on
hydraulic and water quality results to the report file. Do not use ENopenQ, ENinitQ,
ENrunQ, ENnextQ, and ENcloseQ in conjunction with ENsolveQ.

Example:
ENopen("net1.inp", "net1.rpt", "");
ENsolveH();
ENsolveQ();
ENreport();
ENclose();

ENopenQ

int ENopenQ(void)

Description: Opens the water quality analysis system.

Returns: Returns an error code.

Notes:

Call ENopenQ prior to running the first water quality analysis using an ENinitQ -
ENrunQ - ENnextQ (or ENstepQ) sequence. Multiple water quality analyses can be
made before calling ENcloseQ to close the water quality analysis system.

toolkit.rtf EPANET Programmer's Toolkit Page 66 of 74

Do not call this function if a complete water quality analysis is being made using
ENsolveQ.

See Also: ENintQ, ENrunQ, ENnextQ, ENstepQ, ENcloseQ

ENinitQ

int ENinitQ(int saveflag)

Description: Initializes water quality and the simulation clock time prior to running a water
quality analysis.

Arguments:

saveflag: 0­1 flag indicating if analysis results should be saved to EPANET's
binary output file at uniform reporting periods.

Returns: Returns an error code.

Notes:

Call ENinitQ prior to running a water quality analysis using ENrunQ in conjunction with
either ENnextQ or ENstepQ.

ENopenQ must have been called prior to calling ENinitQ.

Do not call ENinitQ if a complete water quality analysis is being made with a call to
ENsolveQ.

Set saveflag to 1 if you intend to use ENreport to generate a report or wish to save
computed results to the binary output file.

See Also: ENopenQ, ENrunQ, ENnextQ, ENstepQ, ENcloseQ

ENrunQ

int ENrunQ(long* t)

Description:

Makes available the hydraulic and water quality results that occur at the start of the next
time period of a water quality analysis, where the start of the period is returned in t.

Arguments:

t: current simulation clock time in seconds.

Returns: Returns an error code.

Notes:

toolkit.rtf EPANET Programmer's Toolkit Page 67 of 74

Use ENrunQ along with ENnextQ in a do...while loop to access water quality results
at the start of each hydraulic period in an extended period simulation. Or use it with
ENstepQ in a do...while loop to access results at the start of each water quality
time step. See each of these functions for examples of how to code such loops.

ENinitQ must have been called prior to running an ENrunQ - ENnextQ (or ENstepQ) loop.

The current time t of the simulation is determined from information saved with the
hydraulic analysis that preceded the water quality analysis. Treat it as a read-only
variable.

See Also: ENopenQ, ENinitQ, ENnextQ, ENstepQ, ENcloseQ

ENnextQ

int ENnextQ(long* tstep)

Description: Advances the water quality simulation to the start of the next hydraulic time
period.

Arguments:

tstep: time (in seconds) until next hydraulic event occurs or 0 if at the end of
the simulation period.

Returns: Returns an error code.

Notes:

This function is used in a do­while loop with ENrunQ to perform an extended period
water quality analysis. It allows you to access water quality results at each hydraulic
period of the simulation. The water quality routing and reactions are carried out
internally at a much smaller time step. Use ENstepQ instead of this function if you need
to access results after each water quality time step.

The value of tstep is determined from information saved with the hydraulic analysis
that preceded the water quality analysis. Treat it as a read-only variable.

Example:

long t, tstep;
ENsolveH(); /* Generate & save hydraulics */
ENopenQ();
ENinitQ(0);
do {
 ENrunQ(&t);
 /* Monitor results at time t, which
 begins a new hydraulic time period
 */
 ENnextQ(&tstep);
} while (tstep > 0)
ENcloseQ();

toolkit.rtf EPANET Programmer's Toolkit Page 68 of 74

See Also: ENopenQ, ENinitQ, ENrunQ, ENcloseQ

ENstepQ

int ENstepQ(long* tleft)

Description:

Advances the water quality simulation one water quality time step. The time remaining in
the overall simulation is returned in tleft.

Arguments:

tleft: seconds remaining in the overall simulation duration.

Returns: Returns an error code.

Notes:

This function is used in a do­while loop with ENrunQ to perform an extended period
water quality simulation. It allows you to access water quality results at each water
quality time step of the simulation, rather than at the start of each hydraulic period as
with ENnextQ.

Use the argument tleft to determine when no more calls to ENrunQ are needed
because the end of the simulation period has been reached (i.e., when tleft = 0).

Treat tleft as a read-only variable (do not assign it a value).

Example:

long t, tleft;
ENsolveH(); /* Generate & save hydraulics */
ENopenQ();
ENinitQ(0);
do {
 ENrunQ(&t);
 /* Monitor results at time t */
 ENstepQ(&tleft);
} while (tleft > 0)
ENcloseQ();

See Also: ENopenQ, ENinitQ, ENrunQ, ENcloseQ

toolkit.rtf EPANET Programmer's Toolkit Page 69 of 74

ENcloseQ

int ENcloseQ(void)

Description: Closes the water quality analysis system, freeing all allocated memory.

Returns: Returns an error code.

Notes:

Call ENcloseQ after all water quality analyses have been made using the ENinitQ -
ENrunQ - ENnextQ (or ENstepQ) sequence of function calls. Do not call this function if
ENsolveQ is being used.

See Also: ENopenQ, ENinitQ, ENrunQ, ENstepQ, ENnextQ

ENsaveH

int ENsaveH(void)

Description:

Transfers results of a hydraulic simulation from the binary Hydraulics file to the binary
Output file, where results are only reported at uniform reporting intervals.

Returns: Returns an error code.

Notes:

ENsaveH is used when only a hydraulic analysis is run and results at uniform reporting
intervals need to be transferred to EPANET's binary output file. Such would be the case
when an output report to EPANET's report file will be written using ENreport.

The reporting times can be set either in the EPANET input file (in its [TIMES] section)
or by using the ENsettimeparam function.

See Also: ENreport, ENsettimeparam

ENsaveinpfile

int ENsaveinpfile(char* fname)

Description:

Writes all current network input data to a file using the format of an EPANET input file.

Arguments:

fname: name of the file where data is saved.

toolkit.rtf EPANET Programmer's Toolkit Page 70 of 74

Returns: Returns an error code.

Notes:

The data saved reflect any changes made by calls to the ENsetxxx family of functions
since EPANET data was first loaded using ENopen.

ENreport

int ENreport(void)

Description: Writes a formatted text report on simulation results to the Report file.

Returns: Returns an error code.

Notes:

Either a full hydraulic analysis or full hydraulic and water quality analysis must have
been run, with results saved to file, before ENreport is called. In the former case,
ENsaveH must also be called first to transfer results from the Hydraulics file to the
Output file.

The format of the report is controlled by commands placed in the [REPORT] section of
the EPANET input file or by similar commands issued with the ENsetreport function.

ENresetreport

int ENresetreport(void)

Description:

Clears any report formatting commands that either appeared in the [REPORT] section
of the EPANET Input file or were issued with the ENsetreport function.

Returns: Returns an error code.

Notes:

After calling this function the default reporting options are in effect. These are:
No status report
No energy report
No nodes reported on
No links reported on
Node variables reported to 2 decimal places
Link variables reported to 2 decimal places (3 for friction factor)
Node variables reported are elevation, head, pressure, and quality
Link variables reported are flow, velocity, and head loss

See Also: ENreport, ENsetreport, ENsetstatusreport

toolkit.rtf EPANET Programmer's Toolkit Page 71 of 74

ENsetreport

int ENsetreport(char* command)

Description:

Issues a report formatting command. Formatting commands are the same as used in
the [REPORT] section of the EPANET Input file.

Arguments:

command: text of a report formatting command.

Returns: Returns an error code.

Notes:

Call ENresetreport to clear any previous report formatting commands that either
appeared in the Input file or were issued with calls to ENsetreport or
ENsetstatusreport. Formatted results of a simulation can be written to the Report
file using the ENreport function.

See Also: ENreport, ENresetreport, ENsetstatusreport

ENsetstatusreport

int ENsetstatusreport(int statuslevel)

Description: Sets the level of hydraulic status reporting.

Arguments:

statuslevel: level of status reporting (see below).

Returns: Returns an error code.

Notes:

Status reporting writes changes in the hydraulics status of network elements to the
Report file as a hydraulic simulation unfolds. There are three levels of reporting:

0 - no status reporting
1 - normal reporting
2 - full status reporting

The full status report contains information on the convergence of each trial of the
solution to the system hydraulic equations at each time step of a simulation. It is useful
mainly for debugging purposes.

If many hydraulic analyses will be run in the application it is recommended that status
reporting be turned off (statuslevel = 0).

toolkit.rtf EPANET Programmer's Toolkit Page 72 of 74

ENgeterror

int ENgeterror(int errcode, char* errmsg, int nchar)

Description:

Retrieves the text of the message associated with a particular error or warning code.

Arguments:

errcode: error or warning code
errmsg: text of the error or warning message for errcode
nchar: maximum number of characters that errmsg can hold

Returns: Returns an error code.

Notes: Error message strings should be at least 80 characters in length.

toolkit.rtf EPANET Programmer's Toolkit Page 73 of 74

Toolkit Functions by Task
TASK FUNCTION PAGE

Running a complete
"command line style"
simulation

ENepanet 43

Opening and closing the
EPANET Toolkit system

ENopen 44

ENclose 44

Retrieving information about
network nodes

ENgetnodeindex 44

ENgetnodeid 45

ENgetnodetype 45

ENgetnodevalue 46

Retrieving information about
network links

ENgetlinkindex 47

ENgetlinkid 47

ENgetlinktype 47

ENgetlinknodes 48

ENgetlinkvalue 48

Retrieving information about
time patterns

ENgetpatternid 49

ENgetpatternindex 50

ENgetpatternlen 50

ENgetpatternvalue 50

Retrieving other network
information

ENgetcontrol 51

ENgetcount 52

ENgetflowunits 52

ENgettimeparam 53

ENgetqualtype 54

ENgetoption 54

ENgetversion 55

toolkit.rtf EPANET Programmer's Toolkit Page 74 of 74

TASK FUNCTION PAGE

Setting new values for
network parameters

ENsetcontrol 55

ENsetnodevalue 56

ENsetlinkvalue 57

ENsetpattern 58

ENsetpatternvalue 59

ENsetqualtype 59

ENsettimeparam 60

ENsetoption 60

Saving and using hydraulic
analysis results files

ENsavehydfile 61

ENusehydfile 61

Running a hydraulic analysis ENsolveH 62

ENopenH 62

ENinitH 63

ENrunH 63

ENnextH 64

ENcloseH 65

Running a water quality
analysis

ENsolveQ 65

ENopenQ 65

ENinitQ 66

ENrunQ 66

ENnextQ 67

ENstepQ 68

ENcloseQ 69

Generating an output report ENsaveH 69

ENsaveinpfile 69

ENreport 70

ENresetreport 70

ENsetreport 71

ENsetstatusreport 71

ENgeterror 72

