
Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

An R package for EPANET simulations

Ernesto Arandia, Bradley J. Eck∗

IBM Research, Dublin, Ireland

A R T I C L E I N F O

Keywords:
Water networks
R
EPANET
Hydraulic modeling

A B S T R A C T

The EPANET software for modeling piping networks is widely used for the design and analysis of water systems.
This short communication describes epanet2toolkit, a package for accessing the EPANET simulation engine and
application programming interface from the R environment for computing and graphics. Users of the package
may run extended period simulations of hydraulics and water quality or create custom applications using the
data exploration, visualization, and analysis capabilities of R. epanet2toolkit enables interactive use of EPANET
on a variety of computing platforms, provides integrated error checking, and contributes a publicly available test
suite. The package is available through the Comprehensive R Archive Network and GitHub.com.

1. Introduction

Modeling the behavior of water piping networks is an active area
both in industry and academia with published studies covering a very
broad range of problems, including design, optimization, and man-
agement. Several pieces of software are available for simulating piping
networks including proprietary packages such as WaterGEMS(r),
InfoWater(r), and KYPipe, and freely available packages such as
EPANET (Rossman, 2000). Originally developed by the United States
Environmental Protection Agency, EPANET has over 2000 citations on
Google Scholar making it the most popular choice for academic appli-
cations.

The EPANET simulation engine is written in the C language for
portability and performance. Bindings have been developed to call the
simulation engine from several other languages. The Programmer's
Toolkit (Rossman, 2008) includes bindings for Visual Basic and Pascal.
More recently, bindings for Matlab (Eliades et al., 2016) and Python
(Pathirana, 2016) have been developed. This paper describes bindings
for the R environment (R Core Team, 2013) provided in the form of an
add-on package called epanet2toolkit.

As an R package for water resources modeling, epanet2toolkit joins
a growing group of packages for water applications. The package
epanetReader (Eck, 2016) compliments the simulation capability of
epanet2toolkit with support for parsing EPANET data files into R ob-
jects. In a similar vein, the package swmmr by Leutnant (2017) pro-
vides an interface for the Storm Water Management Model. The da-
taRetrieval package by Hirsch and De Cicco (2015) supports
downloading hydrological and water quality variables from several
sources. The wq package by Jassby and Cloern (2015) aims at exploring

environmental monitoring data. Various aspects of water supply re-
servoirs can be analyzed using packages reservoir by Turner and Galelli
(2016), RSSOP by Arabzadeh et al. (2016), and WRSS by Arabzadeh
et al. (2017). This growing collection of software aimed at environ-
mental and water resources topics shows that R packages are becoming
a popular way to share research outputs in this field.

Two versions of source code for the EPANET simulation engine are
currently available. The latest release on the US EPA website (https://
www.epa.gov/water-research/epanet) is version 2.0.12 from 2008. A
community group called Open Water Analytics released a version 2.1 in
2016 (https://github.com/OpenWaterAnalytics/EPANET/releases/tag/
v2.1). Since version 2.1 contains some extensions and bug fixes it was
chosen for inclusion in epanet2toolkit.

The remainder of this article is organized as follows. First we give a
short description of epanet2tookit's design and list of new functions
provided by the package according to category (Section 2). Section 3
presents usage examples ranging from toolkit installation and full net-
work simulation to solving more complex problems such as optimiza-
tion and stochastic modeling. Finally, we present future developments
and conclusions (Section 4).

2. Design

The EPANET simulation engine, as distinct from the Windows(r)
based graphical user interface, can be invoked from the command line
or through an application programming interface (API). The EPANET
API comprises 74 C functions for carrying out customized simulations.
The R package epanet2toolkit is designed as a wrapper for the EPANET
API. R functions provided by the package have the same name as

https://doi.org/10.1016/j.envsoft.2018.05.016
Received 1 February 2018; Received in revised form 10 April 2018; Accepted 21 May 2018

∗ Corresponding author.
E-mail address: bradley.eck@ie.ibm.com (B.J. Eck).

Environmental Modelling and Software 107 (2018) 59–63

Available online 06 June 2018
1364-8152/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2018.05.016
http://GitHub.com
https://www.epa.gov/water-research/epanet
https://www.epa.gov/water-research/epanet
https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.1
https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.1
https://doi.org/10.1016/j.envsoft.2018.05.016
mailto:bradley.eck@ie.ibm.com
https://doi.org/10.1016/j.envsoft.2018.05.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2018.05.016&domain=pdf


functions in the API, but differ in function arguments, return values,
and handling of error codes.

Functions in the EPANET API return an integer error code and
provide requested values by reference. For example, the function
ENgetnodeindex takes two arguments: the node ID, and a pointer to an
integer variable for storing the requested value (Listing 1). The value
returned by the function is not the node index, but a code indicating
whether the function call finished successfully or encountered an error
or warning condition. To use this function, the calling application needs
to allocate an int variable for storing the requested index and corre-
sponding pointer for passing to the function. Checking the error code
returned by the function is good practice, but not strictly required.

Listing 1. C function prototype from EPANET API

epanet2toolkit exposes functions from the EPANET API to the R
environment through two steps. First, existing functions of the EPANET
API are wrapped by new C functions with return type void or SEXP so
that they can be called from R. Second, new R functions are provided to
call these new C functions. The R functions check their arguments,
check the error codes returned by EPANET, and return the requested
value.

As an example, the R function ENgetnodeindex takes a single ar-
gument and returns the node index (Listing 2). An R script calling this
function passes the node ID as an argument and stores the returned
index in the desired location or prints it to the screen. In case the un-
derlying API call returned an error or warning, the R function raises an
error or warning through R's exception handling system. Checking the
error code returned from EPANET happens on every function call and is
transparent to the user until an error or warning condition actually
occurs.

Listing 2. R function from epanet2toolkit

New functions for the R environment provided by epanet2toolkit
are summarized in Table 1. Users familiar with the EPANET API will
recognize that the R functions share the name of the underlying
EPANET API functions they invoke. Using consistent function names
provides a familiar interface to existing users and makes it easy to port
existing applications to R.

Running a full simulation of hydraulics and water quality and
writing the results to a file is accomplished with the function ENepanet.
The function requires an input file in EPANET's .inp format and writes
output files in text and or binary format. Accessing all other functions
requires opening the EPANET engine with ENopen and closing it with
ENclose.

Hydraulic and water quality simulations may be carried out as ex-
tended period or stepwise simulations. Stepwise simulations allow
programs to interrogate values at each step. Extended period simula-
tions encapsulate stepwise simulations, only reporting values for the
times and network elements specified in the input file. Programs can

use either stepwise or extended period functions for hydraulics and
water quality but must be consistent within each category. Thus,
ENopenH to ENcloseH are compatible with ENsolveQ but not with
ENsolveH. ENopenQ to ENcloseQ are compatible with ENopenH to
ENcloseH or ENsolveH but not ENsolveQ.

Information in the simulation engine can be interrogated and
changed using an appropriate function beginning with “ENget” or
“ENset”. All of these have not been tabulated here, but are documented
in the package manual and symbolized in the table with the wildcard
character “*”. In epanet2toolkit “ENget” functions return the value of
interest and “ENset” functions return NULL invisibly unless an error
occurs.

3. Example usage and capability

3.1. Installation and full network simulation

In order to use epanet2toolkit in an R session it must be installed
and loaded. From within an R session the install.packages function
downloads packages from a repository and installs them on the local
system. R selects packages from the repository according to operating
system. R also keeps track of installed packages so that users do not
need to know or configure the package from their working directory.
This behavior contrasts with bindings for EPANET which require
compiling EPANET for the relevant operating system and architecture
and configuring the dll location.

The default behavior of install.packages is to download pre-com-
piled binary packages for Windows and Mac OS(r) systems, resulting in
a quick installation for most users. Package binaries are not available
for other platforms (e.g. Linux(r)) and so in these cases packages are
downloaded as source code and compiled locally. Local compilation
increases install time slightly but still takes only a few minutes and
happens automatically. Passing the installation option –install-tests
includes the package test suite with the installation so that users can
run tests as described in Section 3.4.

Once a package is installed, calling library loads it into the current R
session. For example, the function ENepanet carries out a full

Software availability

epanet2toolkit is available on the world wide web at https://
cran.r-project.org/package=epanet2toolkit and
https://github.com/bradleyjeck/epanet2toolkit

License MIT
System Requirements R version 3.0.2 or higher
Installation using install.packages() function

Table 1
Functions for the R environment provided by epanet2toolkit.

Name Description

Full Simulations
ENepanet() Runs a full simulation
Opening and Closing EPANET engine
ENopen() Opens EPANET engine
ENclose() Closes EPANET engine
Extended Period Simulation
ENsolveH() Solves the network hydraulics
ENsolveQ() Solves the network water quality
Stepwise Hydraulic Simulation
ENopenH() Opens the hydraulics analysis system
ENinitH() Initializes network prior to simulation
ENrunH() Runs a single period hydraulic analysis
ENnextH() Length of time to next hydraulic event
ENcloseH() Closes the hydraulics analysis system
Stepwise Water Quality (WQ) Simulation
ENopenQ() Sets up for WQ analysis
ENinitQ() Initializes WQ analysis
ENrunQ() Computes WQ results at current time
ENnextQ() Advances WQ sim. to start of next hyd. time period
ENstepQ() Advances WQ sim. one WQ time step
ENcloseQ() Closes the WQ analysis
Writing Files
ENsaveH() Saves hydraulic results to binary file
ENsaveinpfile() Saves current data to INP text file
ENreport() Writes simulation report file
Retrieving and Setting Parameter Values
ENget*() Functions that retrieve network information
ENset*() Functions that set network parameter values

E. Arandia, B.J. Eck Environmental Modelling and Software 107 (2018) 59–63

60



simulation and writes results to a report file (Listing 3). The network
described in the ‘.inp’ file and the simulation results written in the ‘.rpt’
file can be further analyzed and visualized within R using the package
epanetReader (Eck, 2016).

Listing 3. Installing the package and running a full network simulation

Once epanet2toolkit is available within R, functions from the
package can be used to access and modify network properties and used
along with functions provided by R to carry out different types of
analysis. The following sections provide some examples.

3.2. Accessing and changing network properties

To access or change network properties, the first step is to open the
EPANET engine with ENopen. The value of a network parameter such
as the length of the pipe having index 2 can be accessed using
ENgetlinkvalue. The first argument specifies the link index and the
second argument specifies the parameter to be retrieved. The value of
this parameter can be changed using ENsetlinkvalue. The first two ar-
guments are the same, but the third argument specifies the new value
for the parameter. A subsequent call to ENgetlinkvalue confirms that
the value was changed. Finally, ENclose closes the EPANET engine.

Further function calls could be added to Listing 4 – before ENclose –
and run in sequence. This workflow contrasts with using the EPANET
API from C in that calling different functions requires updating a script
but not recompiling an application.

Listing 4. Accessing and changing network properties

3.3. Model calibration by univariate optimization

Consider a basic model calibration problem: EPANET's example
network 1, which is included with the package, was operated under a
high demand condition with a view to estimating the pipe roughness.
Conditions were typical for the time 00:00 except that a demand of
2000 gallons per minute was induced at node 23 (index 7). Under that
condition, pressure measurements of 112.11, 110.87 and 110.32 psi
were collected at nodes with indices 4, 6, and 8.

Listing 5 shows one way of estimating pipe roughness assuming the
same roughness value applies to all pipes in the network. First, ENopen
initializes EPANET and processes network information. Then, EN-
settimeparam and ENsetnodevalue update the network to the condi-
tions of this example. Only one time period is considered and the de-
mand at one node has been changed. Next, the optimize function built
into R is used to find a value of pipe roughness that minimizes the sum
of squared errors between the measured and modeled pressures. The
roughness value, in this case from the Hazen-Williams formula, is

constrained to fall in the interval between 50 and 150. The observed
pressures and their node indices are passed through to the objective
function by optimize. Finally, the EPANET engine is closed with a call
to ENclose.

Listing 6 provides the user-defined functions calibObj, setAllPi-
peRoughness and sse used to implement the objective function for pipe
roughness calibration in this example. The function calibObj calls the
helper function setAllPipeRoughess to change the roughness value of all
pipes in the network to the provided value. setAllPipeRoughness loops
over all links in the network, only updating the roughness if the link is
of type pipe as opposed to pump or valve. ENsolveH carries out a full
hydraulic simulation. The function sse computes the sum of squared
error between measured and modeled pressures.

Running this example yields a C-value of 131 and an objective value
of 0.88. Note in an R session listing 6 should be run before listing 5 so
that the objective function is available to the optimizer.

Listing 5. Pipe roughness calibration with univerate optimization

Listing 6. Objective function for pipe roughness calibration

E. Arandia, B.J. Eck Environmental Modelling and Software 107 (2018) 59–63

61



3.4. Stochastic simulation

Stochastic simulation is often of interest in the context of modeling
hydraulics under water demand forecasting scenarios. Again using example
network 1, consider a problem where the water utility is interested in
building a demand forecasting model and simulating the water network
behavior under forecasts produced by this model.

The total water demand in the network measured at hourly intervals
for a period of approximately one week is available in a comma-sepa-
rated values file named data.csv. The first line of this file contains the
headings Time and Measurement; the subsequent lines contain the
corresponding timestamps and values of the measurements.

A seasonal ARIMA(0,1,4) (0,1,1)24× model is considered appropriate
(Arandia et al., 2016) and fitted to the data. Listing 7 shows how the
measurement data is read into a data frame using the read.csv function
provided by the base R distribution and how a demand forecast for the
next 24-h period is calculated using the sarima.for function of the astsa
package (Stoffer, 2017), which must be previously installed. A new
demand pattern newpattern is computed by dividing the forecasts by
their mean value.

In order to update the EPANET input file with the calculated new
pattern, the toolkit is opened to work on network 1 with ENopen, the
pattern time interval is set to 3600 s with ENsettimeparam, the existing
time pattern is replaced by newpattern using ENsetpattern, the input
file is saved with ENsaveinpfile, and finally the toolkit is closed with
ENclose. The result is a modified file Net1-forecast.inp that can be
readily used in hydraulic simulation.

Listing 7. Stochastic simulation using water demand forecasts

3.5. Test suite

As part of the development process, a collection of tests was created to
verify the behavior of each R function provided by epanet2toolkit. These
tests take the form of examples included with the package manual and as a
suite of tests for use with a testing framework. Examples are accessed
through the help system for each function (e.g. ?ENepanet, or help
(ENepanet)). They are designed to run interactively and illustrate usage. In
contrast, the test suite is designed to run automatically, thus making it easier
to detect changes that alter package behavior and to document bugs and
fixes.

Tests include rudimentary behavior checking for functions and im-
plementations of the sample applications described in the documenta-
tion for the EPANET programmer's toolkit (Rossman, 2008). The sample

applications are located in the ‘tests/testthat’ directory under the file
names ‘test_epanet_example_2.r’ and ’test_epanet_example_3.r’ Because
the tests were written to verify the performance of epanet2toolkit
roughly one third are specific to the R environment. The remaining tests
represent a publicly available test suite for the EPANET API and thus
they may prove useful in detecting changes or bugs in future versions of
the simulation engine. Provided tests have been installed as shown in
Listing 3, the test_package function from testthat (Wickham, 2011) runs
the suite of tests (Listing 8). Here the test reporter has been specified to
generate more verbose output.

Listing 8. Running the package test suite

4. Conclusions

This short communication has described epanet2toolkit, a package
for making EPANET simulations in the R environment. With the
package, two commands are needed to download, compile (if required),
and load the EPANET simulation engine into the R environment. These
steps work on Windows, Mac OS, and Linux systems. Functions pro-
vided by the package map directly to functions in the EPANET API,
enabling developers to port applications into and out of R. Standard
EPANET simulations can be invoked with a single function and custo-
mized applications can be developed to leverage the visualization and
analysis capabilities of R including other packages in the R ecosystem.

Advanced users of epanet2toolkit should keep in mind a few known
weak points with version 0.2.1. An R object wrapping an EPANET si-
mulation is not provided so it is only possible to run one simulation at a
time within an R session. In its current version epanet2toolkit provides
55 of the 74 functions exposed by version 2.1 of EPANET's C API. Most
functions not yet supported in R relate to the curves and demands
sections on the inp file. Future work on the package could address these
areas.

By improving accessibility of water network simulations, epa-
net2toolkit aims to enable more robust data-driven decision making for
these critical infrastructure systems. epanet2toolkit is available under
the MIT license and welcomes contributions from third party devel-
opers via GitHub github.com/bradleyjeck/epanet2toolkit. The GitHub
page Issues tab is the place to raise questions about the package in-
cluding bugs and proposed enhancements.

References

Arabzadeh, R., Aber, P., Panaghi, K., Araghinejad, S., Montaseri, M., 2017. WRSS: Water
Resources System Simulator. R package version 1.0. https://CRAN.R-project.org/
package=WRSS.

Arabzadeh, R., Aberi, P., Panaghi, K., Araghinejad, S., Montaseri, M., 2016. RSSOP:
Simulation of Supply Reservoir Systems Using Standard Operation Policy. R package
version 1.1. https://CRAN.R-project.org/package=RSSOP.

Arandia, E., Ba, A., Eck, B., McKenna, S., 2016. Tailoring seasonal time series models to
forecast short-term water demand. J. Water Resour. Plann. Manag. 142 (3),
04015067.

Eck, B.J., 2016. An r package for reading epanet files. Environ. Model. Software 84,
149–154. http://www.sciencedirect.com/science/article/pii/S1364815216302870.

Eliades, D.G., Kyriakou, M., Vrachimis, S., Polycarpou, M.M., 2016. Epanet-matlab
toolkit: an open-source software for interfacing epanet with matlab. In: Computing
and Control for the Water Industry, 14th International Conference, . https://github.
com/KIOS-Research/CCWI2016/blob/master/CCWI2016/Paper/Eliades2016.pdf.

Hirsch, R.M., De Cicco, L.A., 2015. User Guide to Exploration and Graphics for RivEr
Trends (EGRET) and DataRetrieval: R Packages for Hydrologic Data. U.S. Geological
Survey, Reston, VA Ch. A10. http://pubs.usgs.gov/tm/04/a10/.

Jassby, A.D., Cloern, J., 2015. wq: Exploring Water Quality Monitoring Data. R package
version 0.4.5. http://CRAN.R-project.org/package=wq.

Leutnant, D., 2017. swmmr: R Interface for US EPA's SWMM. R package version 0.7.0.
https://CRAN.R-project.org/package=swmmr.

E. Arandia, B.J. Eck Environmental Modelling and Software 107 (2018) 59–63

62

https://CRA
https://CRA
https://CRA
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref3
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref3
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref3
http://www.sciencedirect.com/science/article/pii/S1364815216302870
https://github.com/KIOS-Research/CCWI2016/blob/master/CCWI2016/Paper/Eliades2016.pdf
https://github.com/KIOS-Research/CCWI2016/blob/master/CCWI2016/Paper/Eliades2016.pdf
http://pubs.usgs.gov/tm/04/a10/
http://CRA
https://CRA


Pathirana, A., 2016. Epanettools 0.9.2. https://pypi.python.org/pypi/EPANETTOOLS/0.
9.2.

R Core Team, 2013. R: a Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Rossman, L., 2008. Epanet 2 Programmer's Toolkit Files. https://www.epa.gov/sites/
production/files/2014-06/en2toolkit.zip.

Rossman, L.A., 2000. Epanet 2 Users Manual. US EPA, Cincinnati, Ohio.

Stoffer, D., 2017. astsa: Applied Statistical Time Series Analysis. R package version 1.8.
https://CRAN.R-project.org/package=astsa.

Turner, S., Galelli, S., 2016. Water supply sensitivity to climate change: an R package for
implementing reservoir storage analysis in global and regional impact studies.
Environ. Model. Software 76, 13–19.

Wickham, H., 2011. testthat: get started with testing. R J. 3, 5–10.

E. Arandia, B.J. Eck Environmental Modelling and Software 107 (2018) 59–63

63

https://pypi.python.org/pypi/EPANETTOOLS/0.9.2
https://pypi.python.org/pypi/EPANETTOOLS/0.9.2
http://www.R-project.org/
https://www.epa.gov/sites/production/files/2014-06/en2toolkit.zip
https://www.epa.gov/sites/production/files/2014-06/en2toolkit.zip
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref12
https://CRA
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref14
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref14
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref14
http://refhub.elsevier.com/S1364-8152(18)30096-3/sref15

	An R package for EPANET simulations
	Introduction
	Design
	Example usage and capability
	Installation and full network simulation
	Accessing and changing network properties
	Model calibration by univariate optimization
	Stochastic simulation
	Test suite

	Conclusions
	References




