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1 Introduction and Getting Started

In the 1990s Civil Engineering programs reduced programming courses in a effort
to recover hours for other topics – a logical decision at the time, but with some
consequences. The philosophy was that engineers would not need to be able to write
computer programs, but instead just use them. Microsoft Excel and Lotus 1-2-3 were
the dominant spreadsheet software programs (Borland QuatroPro was a close third),
and with macro instruction capability, much legitimate engineering computation could
be performed within these tools. In fact I developed Excel spreadsheets that could
solve multi-dimensional diffusion problems (3D groundwater flow) using fully implicit
finite difference methods. These spreadsheets were slow relative to MODFLOW, but
you could watch the solutions evolve – ultimately the process was deemed a waste,
because of the ever present “... there is no longer a need for engineers to be able
to write programs.” Later on I developed spreadsheets to perform pressurized pipe
network simulation, gradually varied flow simulation, and rudimentary water-hammer
and St-Venant equation solutions. The spreadsheets were never really practical (yes
they worked well, produced the same results as professional products, but were always
intended a pedagogical tools), but they proved an important point – if you could teach
a computer to follow an algorithm it made you a more self-help user of the professional
tools.

In 2014 several of my students expressed desire to understand programming – they
all know how to write code, but feel they don’t know how to build algorithms (and
implement them). This workbook is an attempt to remedy that student self-identified
weakness. I conducted several one-to-one classes (as special topics); they learned a
lot, I learned even more. This book is a tribute to their interests.

The workbook plan is to introduce a programming tool – I have selected R because
it has a rich development environment already available, graphics is almost trivial,
then apply that tool to selected hydraulics problems of practical value. In the end the
reader ends up with a toolkit that can either stand-alone, or more likely supplement
professional tools they will eventually use.

R is freeware, but it is built and maintained by a consortium of programmers and
statisticians. They have evolved the environment to work on most of the main ar-
chitectures (MacOS, Windows, Linux); there are even parallel processor and GPU
builds available, and a company called RStudio provides the APIs to even run it
server side. Much of the underlying code is C, C++, and well proven FORTRAN
routines. 1

1This entire document is a work in progress – As of 20-AUG-2018 it was complete only as far as
the Introduction to EPANET. As the document is developed updates will be placed onto the class
repository.
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1.1 About R

R is a open source envrionment that runs on Windows, Linux/UNIX, and Mac OS
X. The individual binaries are unique to each OS and architecture, but R “source” is
interchangeable among machines. With very minor differences, an R script will run
equally well on any machine.

R is a statistical analysis tool, it is also a programming tool and language, it is also
a nearly “publication” quality graphics tool. Naturally all this capability comes at a
cost (especially since the software is distributed for “free”) — learning to do more than
simple calculations takes some time (not much), but the skill is highly perishable. You
will need to keep notes, or copies of your R scripts for future reference. Relearning
after some time away from R is pretty simple, so the modeler only has to pay the
steep learning cost once.

The remainder of this essay shows how to obtain and install R on a Windows ma-
chine. Macintosh and Linux installs are accomplished in a similar fashion. For the
truly insane, the entire envrionment can be built from source on any machine with
PERL, gcc, and gfortran compliers (default in Linux, easy to obtain for other archi-
tectures).

1.2 Getting Started

The first step required (for using R as a programming tool) is to install R on your
computer. The source of the binary builds is the same regardless of the underly-
ing operating system – the Comprehensive R Archive Network (CRAN for short).
The remainder of this chapter shows how to get the tool running on the three main
operating systems in current practice.

1.2.1 Windows Users

The purpose of this section is to demonstrate how to get R running on a Windows
computer. This document assumes the following:

1. You have internet connection.

2. You have sufficient user privileges to install software on your machine. (If you
need someone else to install, I did my install by running the installer as a local
administrator — obviously you need the password)

3. You have 60MB or so of vacant disk space on the system directory.

The step-by-step guide is presented as a series of screen captures. Obviously adjust
inputs to fit your machine. The version in these screen captures is quite dated —
use the most recent, stable version offered on CRAN (Comprehensive R Archive
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Network).2

Figure 1. Google “R” (alternatively google CRAN).

Figure 2. Taking the “Windows Link”.

2I have updated the screen captures for Windows 10 — so these should replicate the steps.
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Figure 3. Choose “Install R for the First Time” – goes to the download page. We will next select
“Download R . . . ” and it should download a windows installer. Choose “save” when prompted..

Figure 4. Download arrived. Now run the installer (you need install privileges – if its your personal
laptop, then your regular user account should work). .
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Figure 5. Installer run in progress. Accept the defaults – its just easier and works. Later you can
re-install elsewhere in your filesystem..

Figure 6. Installed “R base” packages. Notice it installs 32-bit and 64-bit versions. The next step is
to verify the install by trying to run the program..
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Figure 7. Run the program. Type plot(c(1,2,3),c(1,4,9),type="l",col="red") into the
console window. A plot should be generated as shown. If this works, then your install is good and now
we install R Studio.

Figure 8. Search for R Studio. Choose the Download link..
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Figure 9. In the download link scroll down to the repository. You want to install the FREE Desktop
version. If on a windows machine, it is the top most of the installers. Don’t accidentally download
the Zip/Tarballs – all that is source code and without the compilers you cannot make much use of it.
Building from source is a challenge. Choose the windows installer and download, select “save” when
prompted.
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Figure 10. Download arrived, run the executable (it should be a .exe file). Accept the defaults dur-
ing the install.

Figure 11. Installer in-progress. When it completes, you should now have R Studio and R installed.
We will test the R Studio install using the same simple plot call.
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Figure 12. Here we see the program is installed, now run R Studio to verify the install.

Figure 13. Type plot(c(1,2,3),c(1,4,9),type="l",col="red") into the console window. A
plot should be generated as shown.
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Yipee! It is running. You can install additional packages now or later. You should
now have sufficient computation capability for the course.
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1.2.2 Macintosh OSX Users

[Replicate Windows using MacOS screen captures] The purpose of this section is
to demonstrate how to get R running on a Macintosh computer.3 This document
assumes the following:

1. You have internet connection.

2. You have sufficient user privileges to install software on your machine. (If it
is your personal machine, the install may request your password, but should
install.)

3. You have 60MB or so of vacant disk space on the system directory.

The step-by-step guide is presented as a series of screen captures. Obviously adjust
inputs to fit your machine. The version in these screen captures is quite dated —
use the most recent, stable version offered on CRAN (Comprehensive R Archive
Network).4

Figure 14. Google “R” (alternatively google CRAN).

3I assume no-one will be using a PPC-Based Mac. If so, the CRAN does have PPC builds of R,
but R Studio is not available; you would have to build from the source code.

4I have updated the screen captures for Windows 10 — so these should replicate the steps.
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Figure 15. Select MacOS operating system link.

Figure 16. Download the R Installer.
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Figure 17. Run the installer, accept the defaults.

Figure 18. Successful install.
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Figure 19. Google R Studio.

Figure 20. Select R Studio installer (for MacOS).

Page 18 of 187



ICT Hydraulic Networks SUMMER 2018

Figure 21. Mount the disk image. Then drag the R Studio icon on top of the Applications link –
this action will install the program.

Figure 22. Start R Studio (in Applications directory, double click on the icon).
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Figure 23. Type in some R script and viola – it produces a simple plot.

Yipee! It is running. You can install additional packages now or later. You should
now have sufficient computation capability for the course.
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1.2.3 Linux Users

The purpose of this section is to demonstrate how to get R and R Studio running
on a Linux computer. This document assumes the following:

1. You have internet connection.

2. You have sufficient user privileges to install software on your machine. Gener-
ally, if it is your own machine then you have superuser (root) privileges. If it
is some network machine maintained by someone else you probably don’t have
such priviliges. The examples here use the sudo <command> to do the installs
– on my machine the password I enter is my user password (and not the root
password). Alternativley you can switch user su to root, and run the installs as
root – this approach is considerably more dangerous in terms of wrecking your
operating system that using the sudo approach.

3. You have 60MB or so of vacant disk space on the system directory.

The step-by-step guide is presented as a series of screen captures. Obviously adjust
inputs to fit your machine. Use the most recent, stable version offered on CRAN
(Comprehensive R Archive Network).

Figure 24. Terminal Prompt in Linux.

To get started we need to install R. The easiest method is to use the package manager
– my Linux distribution is Ubuntu 16.XX. It is built from the debian distribution and
uses the apt package manager. The package manager is pretty cool because when we
request a package it finds the package and its dependencies, downloads everything
needed and then we can install. In earlier times (the 1990’s) using the Red Hat
Package Manager (rpm) one would have to find the dependencies themselves (in all
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fairness rpm would identify the dependencies and suggest where to find them!). So
here we go, first open a terminal in Linux.

Next in the terminal window issue the command sudo apt install r-cran-littler.

Figure 25. Install R using the apt package manager (or rpm if using a red hat variant).

When you press return, the computer should ask for a password – use your user
password; if you have install privileges this will work. If not, you will have to switch
user to root and either add your user account to the group wheel, return to your
account – or just install as root.

Next the install will begin and may take a few minutes. Usually there is a lot of
installer messages that run across the screen (kind of like in “The Matrix”). The apt

utility is downloading files and binging them to resources on the system so that R
can run. Eventually it should get to the end of the install and may look something
like the next screen capture.

Our next task is to verify that the install was successful. Usually failure is obvious,
but not always. I find the easiest way to verify that the operating system thinks the
software is installed is issue the command to run the program with the version switch
active. In this case, issue the command r --version. This command will try to run
R, and will return the version number (or build number).

In the next screen capture when we run the command we see that the version number
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is R version 3.2.2. The version numbering system is typical for all software – it
identifies something like this is the second subversion, of the second revision, of the
third stable release.

Figure 26. Verify install of R using r --version.

The next step I recommend is to go ahead and download a development environment.
R Studio is an integrated development environment for R. We don’t “need” it, but
it enforces some discipline, gives us a place to store and modify R-scripts (little
programs), and lets us see all of our work going on in one location.

To get R Studio we have to download it from the manufacturer, the copy we will use
is free. Instead of apt this time I used Firefox to navigate to the R Studio website,
then select download.

Next select the appropriate installer for your platform. Be sure you are selecting an
installer and not the source codes for the program.5

We will download the 64-bit version (unless you have a 32-bit machine, then you need

5In theory we could build the program from source using the make utility and (hopefully) already
installed compilers – this is for people with time, training, inclination and need. We are going to
use the already built binaries!
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32-bit software). We need to select our Linux platform – mine is Unbuntu/Debian.
I also have a Red Hat/SuSe machine, so if I were using that machine, i would select
its software.

Figure 27. Browser search for R Studio; go to downloads. We are going to select the free (leftmost)
column.

Figure 28. Download the version of R Studio; in this case 64-bit for Ubuntu Linux (what I am us-
ing). My computer asks if upon download if I want to run the installer, of course select YES.
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Figure 28 is the selection page for selecting the installers. Once I select the package
the computer starts the download, and asks me if I want to run the installer, as in
Figure 29

Figure 29. Here we select install, and let the installer do its thing.

Selecting yes, the installer will attempt to install R Studio onto my computer. Once
installation is complete, the program is ready for a validation (of install) run.

Figure 30. To launch R Studio, either select in the applications folder (or type in the terminal
rstudio.
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Figure 30 is a screen capture after installation using the Unbuntu program manager
window. Both R and R Studio are available.

Either select R Studio to launch it, or type in a terminal window rstudio and the
IDE should launch. The IDE itself is a bit complicated, but actually enables us to
keep better track of our work and ultimately saves time. MatLab users should notice
that the interface looks quite similar (at least it does to me) – its also the same
concept.

Figure 31 is the result of launching the program. The left side of the IDE is an R
console – exactly what would occur if we had just started R. The right side of the
IDE is divided into an upper and lower panel. Each panel provides information about
our programming environment at any instant – and the content is selectable from the
icons at the top of each panel.

Figure 31. Upon opening you should have the following integrated development environment (IDE).
The left panel is exactly what you would obtain if you just type r in the terminal window. .

The next few figures are a step-by-step example to introduce R Studio as well as
test if it installed correctly. We could simply type in the R console within the IDE,
but instead to get into the habit of saving our work, we will open a new scripting
file.
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Figure 32 shows the process of selecting FILE/OPEN to create a new file to store our
scripts. We will type a few commands into the file and then run them.

Figure 32. Open a new file – in this case as an R-Script.

Figure 33. Type in some R instructions, select the instructions and choose RUN.
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So once the file is open the left side of the IDE divides into two panels, an upper and
lower panel. The lower panel is the console environment, and the upper panel is a
script editor.

Figure 33 shows the upper panel with the R commands shown in Listing 1

Listing 1. R code demonstrating a few commands
This fragment of code generates two vectors X and Y and then plots them.

############### Some R Commands ########################
x <- c(0,1,2,3,4,5) # create a vector of 6 elements -- integers 0 to 5.
y <- x*x # square x, put result in y.
plot(x,y,xlab=" X_Axis",ylab="Y-Axis (X-squared)",lwd=3, type="l") # make and label a plot

To actually run the code we can either highlight the portion of the script file we
wish the program to execute (that’s what done here), or we can save the file and
run the entire file. Often we will do both – highlight portions to develop a model,
then save and run the file as needed. The term “sourcing” a [file] in R is jargon for
running the commands contained within a file named [file]. The ability to save and
reuse commands is really useful and is what makes R (or any other stored program
software) really useful.

Figure 34 is the result of highlighting these three lines of code and running them
(notice the little run icon above the script editor).

Figure 34. Completed script run. Notice the plot in the lower right panel. At this point you have a
functioning programming tool.
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2 Algorithms and R for Computing

An algorithm is a recipe. A useful definition is

An algorithm is a computational method or an ensemble of rules deter-
mining the order and form of numerical operations to be applied to a
set of data a(a1, a2, . . . ) in order to find a new set of values x(x1, x2, . . . )
forming the solution of a problem.

An algorithmic procedure can be represented as

x = f(a) (1)

From a mathematical perspective the main concern is that the algorithm
is well posed:

1. A solution exists for a given a.

2. The computation must lead to a single solution for x given a.

3. The results for x must be connected to the input a through the
Lipschitz relation.

|δa| < η then |δx| < M |δa| (2)

where M is a bounded natural number, M = M(a, η)6.

Certain common problems are not well posed as stated but with reasonable
assumptions can be forced into such a state.

Thus an algorithm is a recipe to take input data and produce output responses
through some relationships. If a well posed problem then each result is related to
the inputs, and the same inputs (in an algorithm) produce the same results. By the
recipe analogy, if you follow the same recipe each time with the same raw materials
then the cake should taste the same when it is baked.

An important concept is that an algorithm operates on data (procedure-oriented); an
object-oriented view is that an algorithm performs a task (generate response) based
on states established by the data. Both points of view are valid and equivalent.

Most computational hydraulics models are built (by a quirk of history) in a procedure-
oriented perspective.

2.1 Tools

A practicing modeler needs a toolkit — these tools range from the actual compu-
tation engine (EPA-SWMM, HEC-RAS, FESWMS, HSPF, WSPRO, TR-20, etc.)

6Think of M as a mapping function.
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to analysis tools for result interpretation (R, Excel) to actual programming tools
(FORTRAN,PERL, etc.) to construct their own special purpose models or to test results
from general purpose professional models.

In this book R will be used for programming, analysis, and presentation.

2.2 Programming

Why programming?

There are three fundamental reasons for requiring a programming experience:

1. Teaching someone else a subject or procedure forces the teacher to have a rea-
sonable understanding of the subject or procedure. Teaching a computer (by
virtue of programming) forces a very deep understanding of the underlying al-
gorithm.

2. You will encounter situations that general purpose programs are not designed to
address; if you have a moderate ability to build your own tools when you need
to, then you can. In all likliehood, you will “trick” the professional program,
but you cannot invent tricks unless you know a little bit about programming.

3. Programming a computer requires an algorithmic thought process — this pro-
cess is valuable in many other areas of engineering, hence the act of program-
ming is good discipline for other problems you will encounter.

2.3 Interpolating Tabular Data – A useful algorithm

Material properties in physical systems are usually tabulated values. A frequent task
is to interpolate in a set of tabular values to approximate the value between rows (or
columns) in the table. Linear interpolation is the common technique used; and the
tables can are stores as either separate files, or, if the tables are small enough, they
can be directly imbedded into the code.

2.4 Linear Interpolation

Figure 35 is a sketch of a set of ordered pairs (x, y).

These pairs (there are two in the sketch) represent values in a table, for instance x may
represent water temperature, and y may represent vapor pressure at that particular
temperature. Two adjacent values (in the table) are depicted in the sketch, and the
pairs are ordered bases on the x-value.

Now suppose we want to estimate the value of y∗ at some intermediate value x∗ that
lies between x1 and x2. As a computational task, the problem statement is to
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Figure 35. Sketch of two adjacent values from a table, plotted in Cartesian coordinate system..

“Estimate the value of y∗ associated with the value x∗ given the ordered pairs (x1, y1)
and (x2, y2).”

Linear interpolation simply uses the concept of similar triangles to scale the x and y
distances between the ordered pairs to the intermediate location. Equation 3 is the
result of application of similar triangles to the situation described by Figure ?? and
the problem statement.

x∗ − x1

x2 − x1

=
y∗ − y1

y2 − y1

(3)

Next, apply algebra to solve Equation 3 for y∗, to obtain Equation 4
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y∗ = y1 +
(y2 − y1)(x∗ − x1)

(x2 − x1)
(4)

Now we can use 4 to estimate values between any two data pairs.

2.4.1 Interpolation of Values in Two Pairs

Figure 36 is a table of water properties from (CITE), that represents typically how
tabular data are presented. The temperature column is arranged in increasing order
and the other properties associate with temperature across a row.

Figure 36. Table of water properties in SI units (from CITE).

Now suppose we wished to estimate the density of water at 44o C. The two ordered
pairs of temperature and density that surround 44o C are (40o C, 992 kg/m3) and
(50o C, 988 kg/m3). So, to estimate the unknown density we can apply Equation 4
and obtain the following result

y∗ = 992 +
(988− 992)(44− 40)

(50− 40)
= 990.4 (5)

We might want to do this a lot, so we could write a simplistic script in R and remember
to load it into our environment when we need it

Listing 2. R code demonstrating the interpolation equation.
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# EXAMPLE # ** Interpolating Between Tabulated Pairs
interpolate2pairs <-function(xstar ,x1,y1 ,x2,y2){
# apply interpolation equation
# does not trap errors (divide by zero , etc)

ystar <- y1 + (y2-y1)*(xstar -x1)/(x2 -x1)
return(ystar)

}
# In R Console
> interpolate2pairs (44 ,40 ,992 ,50 ,988)
[1] 990.4
>

For a single interrogation of a table we can stop here, but in many instances we have
to interrogate a table a lot – we want some kind of program structure to handle the
work so all we have to do is pass the temperature value and have the program return
the density.

2.4.2 Interpolation of Values in Two Arrays

To accomplish repeated interpolation we will need to have: (1) an interpolating
method (we have the beginning of one above in Listing 2), (2) the entire table so
we don’t have to enter the pairs, and (3) a way to automatically search the table so
we don’t have to look up values and supply them to the interpolator.

The table itself in this instance is relatively small, so we can simply assign values to
some constant arrays in below in Listing 3.

Listing 3. R code assigning Liquid Properties.

# EXAMPLE # ** Assigning Constants
tempSI <-c(0.00 ,5.00 ,10.00 ,15.00 ,20.00 ,25.00 ,30.00 ,35.00 ,

40.00 ,50.00 ,60.00 ,70.00 ,80.00 ,90.00 ,100.00)
densitySI <-c(1000.00 ,1000.00 ,1000.00 ,999.00 ,998.00 ,997.00 ,996.00 ,

994.00 ,992.00 ,988.00 ,983.00 ,978.00 ,972.00 ,965.00 ,958.00)

# In R Console
> cbind(tempSI ,densitySI)

tempSI densitySI
[1,] 0 1000
[2,] 5 1000
[3,] 10 1000
[4,] 15 999
[5,] 20 998
[6,] 25 997
[7,] 30 996
[8,] 35 994
[9,] 40 992

[10,] 50 988
[11,] 60 983
[12,] 70 978
[13,] 80 972
[14,] 90 965
[15,] 100 958
>

Returning to our example, the value 44 lies between tempSI[9] and tempSI[10], so
we desire an algorithm that starts at tempSI[1] and determines if the search value
is between tempSI[1] and tempSI[2], if not, then increment the row counter and
determine if the search value is between tempSI[2] and tempSI[3], and so on.

Once we locate in the searched array where the value lies then the interpolation
uses the lower and upper elements of the range to interpolate. In the case of our
example, once we determine the 44 lies between tempSI[9] and tempSI[10], then
the interpolation equation is
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y∗ = densitySI[9] +
(densitySI[10]− densitySI[9])(44− tempSI[9])

(tempSI[10]− tempSI[9])
(6)

Listing 4 is an R script that implements the search and interpolation just described.
The script assumes that the searched array (x) is ordered and increasing – not a
trivial assumption! The script has some limited error handling to test if the search
value actually lies in the total range of the array before beginning the search. Once
these tests are passed, then the code searches in the x array for the search value
x∗ and finds the two rows that contain the value. Once the rows are located, the
interpolation equation is used.

Listing 4. R code to Search and Interpolate.

# EXAMPLE # ** Search and Interpolate
getAvalue <- function(x,xvector ,yvector){

# returns a y value for x interpolated from (xvector ,yvector)
# xvector is assumed to be in a monotonic sequence
# function performs limited error checks
# NULL return is error indicator
# T.G. Cleveland July 2007
#
xvlength <- length(xvector)
yvlength <- length(yvector)
# check that vector lengths same
if(xvlength != yvlength){

message (" vectors xvector and yvector different lengths -- exiting function ")
return ()

}
# check that x in range xvector
if(x < min(xvector)){

message (" x too small -- exiting function ")
return ()

}
if(x > max(xvector)){

message (" x too big -- exiting function ")
return ()

}
#
for (i in 1:( xvlength -1)){

if( (x >= xvector[i]) & (x < xvector[i+1]) ){
result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/
(xvector[i+1]- xvector[i])
return(result)

}
# next row

}
# check if at endpoint
if( (x >= xvector[xvlength -1]) & (x <= xvector[xvlength ]) ){

result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/
(xvector[i+1]- xvector[i])
return(result)

}
# should never get to next line
message (" something is really wrong -- check the vectors !")
return ()

}
# In R Console:

> getAvalue (44,tempSI ,densitySI)
[1] 990.4
>

Now we can load and run the getAvalue script and supply the two vectors plus the
search value as shown in Listing 4

This look-up process is readily transferred to other cases, we do have to decide if the
data will be coded as constants (as was done here) or read from a file – if the database
is large the file read option is best. In terms of building a generic look-up tool several
things actually happen in a particular order.
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1. The function call loads in the table (of reading from a file, we would have to
forward declare the vectors).

2. The function searches the first vector for the bounding location of the search
variable.

3. Once the boundaries are located, the interpolation is performed – notice how
the last boundary pair is handled.

Now we can combine the data assignment, the search and interpolate into a single
function so when we want to evaluate in the future we only need the single func-
tion.

Listing 5 is an example of everything combined. Here I have embedded the getAvalue
script into the function so the whole function itself is portbable (we don’t have keep
track of getAvalue). This embedding can be replaced with a load from a library (but
then we must keep track of the path).

The library way is preferable; if getAvalue needs changing, we will have to change
every instance of it in the code, if we miss one the code may still run and it could be
years before we discover the error because a single instance of code fragment within a
larger code was missed – its far better to only change a single instance of the function
when maintenance is necessary.

Listing 5. R code to Return Water Density for Given Temperature.

# Script to return water density in SI units as a function of temperature
getDensitySI <-function(t){
# load the getAvalue () function ###################################################

getAvalue <- function(x,xvector ,yvector){
# returns a y value for x interpolated from (xvector ,yvector)
# NULL return is error indicator
#
xvlength <- length(xvector)
yvlength <- length(yvector)
# check that vector lengths same
if(xvlength != yvlength){

message (" vectors xvector and yvector different lengths -- exiting function ")
return ()

}
# check that x in range xvector
if(x < min(xvector)){

message (" x too small -- exiting function ")
return ()

}
if(x > max(xvector)){

message (" x too big -- exiting function ")
return ()

}
#
for (i in 1:( xvlength -1)){

if( (x >= xvector[i]) & (x < xvector[i+1]) ){
result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/

(xvector[i+1]- xvector[i])
return(result)

}
# next row

}
# check if at endpoint
if( (x >= xvector[xvlength -1]) & (x <= xvector[xvlength ]) ){

result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/
(xvector[i+1]- xvector[i])

return(result)
}
# should never get to next line
message (" something is really wrong -- check the vectors !")
return ()

}
#########################################################################################
# load the data vectors , tempSI and densitySI
tempSI <-c(0.00 ,5.00 ,10.00 ,15.00 ,20.00 ,25.00 ,30.00 ,35.00 ,

40.00 ,50.00 ,60.00 ,70.00 ,80.00 ,90.00 ,100.00)
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densitySI <-c(1000.00 ,1000.00 ,1000.00 ,999.00 ,998.00 ,997.00 ,996.00 ,
994.00 ,992.00 ,988.00 ,983.00 ,978.00 ,972.00 ,965.00 ,958.00)

# now call getAValue
result <-getAvalue(t,tempSI ,densitySI)
return(result)
}

The “library” approach is demonstrated in Listing 6; in this listing the path in the
source() command is unique to my machine – your path is likely to be different. I
find it is useful to contain all the various codes into a single directory and source that
directory once to find the path, then change all the source calls to that path. In fact
that path can be a string variable and the referencing can be automatic (as long as
the files exist!).

Once the look-up function is built then we can interrogate the table many times; and
even build a plot of the table – these features are demonstrated in Listing 6.

Listing 6. R code demonstrating use of getDensitySI().

## In R Console
> # Example demonstrating use of functions
> # load in the functions (must exist -- use path on your machine)
> source (’~/ Dropbox/1-CE-TTU -Classes/UnderDevelopment/

CE4333 -PCH -R/6-RScripts/getAvalue.R’)
> source (’~/ Dropbox/1-CE-TTU -Classes/UnderDevelopment/

CE4333 -PCH -R/6-RScripts/getDensitySI.R’)
> # Now use them
> getDensitySI (44)
[1] 990.4
> getDensitySI (54)
[1] 986
> getDensitySI (88)
[1] 966.4
> t<-seq(0,100,2) # make a temperature vector 0 to 100 in 2 degree increments
> d<-numeric (0) # forward declare d to store results
> howMany <-length(t)
> for(i in 1: howMany){
+ d[i]<-getDensitySI(t[i])
+ }
> plot(t,d,type="l",xlab=" Degrees Celsius",ylab=" Density (kg/m^3)")
>

The resulting plot is shown on Figure 37 below.

2.5 Sorting

Another frequent task in engineering hydraulics is the seemingly mundane task of
sorting or ordering things. Here we explore a couple of simple sorting algorithms,
just to show some of the thoughts that go into such a task, then will ultimately resort
to the internal sorting routines built into R.

2.5.1 Bubble Sort

The bubble sort is a place to start despite it’s relative slowness. It is a pretty reviled
algorithm (read the Wikipedia entry), but it is the algorithm that a naive programmer
might cobble together in a hurry, and despite its shortcomings (its really slow and
inefficient), it is robust.
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Figure 37. Plot of density versus temperature generated using the getDensity() function..
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Here is a description of the sorting task as described by Christian and Griffiths (2016)
(pg. 65):

“Imagine you want to alphabetize your unsorted collection of books. A
natural approach would be just to scan across the shelf looking for out-
of-order pairs – Wallace followed by Pynchon, for instance – and flipping
them around. Put Pynchon ahead of Wallace, then continue your scan,
looping around to the beginning of the shelf each time you reach the end.
When you make a complete pass without finding any more out-of-order
pairs on the entire shelf, then you know the job is done.

This process is a Bubble Sort, and it lands us in quadratic time. There
are n books out of order, and each scan through the shelf can move each
one at most one position. (We spot a tiny problem, make a tiny fix.) So
in the worst case, where the shelf is perfectly backward, at least one book
will need to be moved n positions. Thus a maximum of n passes through
n books, which gives us O(n2) in the worst case.7 . . . . . . For instance, it
means that sorting five shelves of books will take not five times as long as
sorting a single shelf, but twenty-five times as long.”

Converting the word description into R is fairly simple. We will have a vector of n
numbers (we use a vector because its easy to step through the different positions),
and we will scan through the vector once (and essentially find the smallest thing),
and put it into the first position. Then we scan again from the second position and
find the smallest thing remaining, and put it into the second position, and so on until
the last scan which should have the remaining largest thing. If we desire a decreasing
order, simply change the sense of the comparison.

Listing 7 is an R script that implements the algorithm – in the script the actual sort
is treated as a function (we may actually want to use it again someday) which is
loaded into the programming environment first, then an array is defined, and sorted.
The program (outside of the sorting algorithm) is really quite simple.

• Load the sorting function.

• Load contents into an array to be sorted.

• Echo (print) the array (so we can verify the data are loaded as anticipated).

• Sort the array, put the results back into the array (an in-place sort).

• Report the results.

Listing 7. R code demonstrating the naive bubble sort.

##############################################################
rm(list=ls()) # clear the object list (i.e. deallocate and clear memory)
### Bubble Sort Function -- Needs to be defined before sending array to sort ###
# Bubble Sort Function

7Actually, the average running time for Bubble Sort isn’t any better, as books will, on average, be
n/2 positions away from where they?re supposed to end up. One would round the n/2 passes of
n books up to O(n2).
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# MyLocation: ~/ Dropbox/1-CE -TTU -Classes/CE4333 -PCH -R/1-Lectures/Lecture03/ScriptsInLecture
# Bubble Sort with array indexing starting at [1]
# Compare to Python or C where arrays start at [0])
# by: Theodore G. Cleveland 2017 -0317
################################################################
bubble <- function(array)
{

# Prepare the sort , need to know how many things and need a temporary store
swap <- numeric (0) # temporary store (aka swap location)
howMany <- length(array) # how many things to be sorted
# The actual sorting process
for (irow in 1:( howMany -1))
{

for (jrow in 1:( howMany -irow))
{

if( array[jrow] > array[jrow +1])
{

swap <- array[jrow];
array[jrow] <- array[jrow +1];
array[jrow +1] <- swap;

}
}

}
# return result (sort in-place)
return(array)

}
##############################################################

##############################################################
xarray <- c(1003 ,3.2 ,55.5 , -0.0001 , -6 ,666.6 ,102) # the array to sort
print(xarray)
xarray <- bubble(xarray)
print(xarray)
##############################################################

Figure 38 is a screen capture of the script running. In the figure we see that the
program (near the bottom of the file) assigns the values to the vector named array and
the initial order of the array is [1003, 3.2, 55.5,−0.0001,−6, 666.6, 102]. The smallest
value in the example is −6 and it appears in the 5-th position, not the 1-st as it
should.

The first pass through the array will move the largest value, 1003, in sequence to the
right until it occupies the last position. Repeated passes through the array move the
remaining largest values to the right until the array is ordered. One can consider the
values of the array at each scan of the array as a series of transformations (irow-th
scan) – in practical cases we don’t necessarily care about the intermediate values,
but here because the size is manageable and we are trying to get our feet wet with
algorithms, we can look at the values.

The sequence of results (transformations) after each pass through the array is shown
in the following list:

1. Initial value: [1003, 3.2, 55.5,−0.0001,−6, 666.6, 102].

2. First pass: [3.2, 55.5,−0.0001,−6, 666.6, 102, 1003].

3. Second pass: [3.2,−0.0001,−6, 55.5, 102, 666.6, 1003].

4. Third pass: [−0.0001,−6, 3.2, 55.5, 102, 666.6, 1003].

5. Fourth pass: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003].

6. Fifth pass: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003]. Sorted, fast scan.

7. Sixth pass: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003]. Sorted, fast scan.
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Figure 38. Bubble Sort implemented in R.

We could probably add additional code to break from the scans when we have a single
pass with no exchanges – while meaningless in this example, for larger collections of
things, being able to break out when the sorting is complete is a nice feature.
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2.5.2 Insertion Sort

The next type of sorting would be to select one item and locate it either left or right
of an adjacent item based on its size – like sorting a deck of cards, or perhaps a better
description – again using the bookshelf analog from Christian and Griffiths (2016)
(pg. 65):

“. . . . . . You might take a different tack – pulling all the books off the shelf
and putting them back in place one by one. You’d put the first book in
the middle of the shelf, then take the second and compare it to the first,
inserting it either to the right or to the left. Picking up the third book,
you’d run through the books on the shelf from left to right until you found
the right spot to tuck it in. Repeating this process, gradually all of the
books would end up sorted on the shelf and you’d be done. Computer
scientists call this, appropriately enough, Insertion Sort. The good news
is that it’s arguably even more intuitive than Bubble Sort and doesn’t
have quite the bad reputation. The bad news is that it’s not actually that
much faster. You still have to do one insertion for each book. And each
insertion still involves moving past about half the books on the shelf, on
average, to find the correct place.

Although in practice Insertion Sort does run a bit faster than Bubble Sort,
again we land squarely, if you will, in quadratic time. Sorting anything
more than a single bookshelf is still an unwieldy prospect.”

Listing 8 is an R implementation of a straight insertion sort. The script is quite
compact, and I used indentation and extra line spacing to keep track of the scoping
delimiters. The sort works as follows, take the an element of the array (start with
2 and work to the right) and put it into a temporary location (called swap in my
script). Then compare locations to the left of swap. If smaller, then break from the
loop, exchange values, otherwise the values are currently ordered. Repeat (starting
at the next element) , when all elements have been traversed the resulting vector is
sorted. Here are the transformations for each pass through the outer loop:

1. Pass 0: [1003, 3.2, 55.5,−0.0001,−6, 666.6, 102], Initial array.

2. Pass 1: [3.2, 1003, 55.5,−0.0001,−6., 666.6, 102].

3. Pass 2: [3.2, 55.5, 1003,−0.0001,−6., 666.6, 102].

4. Pass 3: [−0.0001, 3.2, 55.5, 1003,−6., 666.6, 102].

5. Pass 4: [−6,−0.0001, 3.2, 55.5, 1003., 666.6, 102].

6. Pass 5: [−6,−0.0001, 3.2, 55.5, 666.6, 1003, 102].

7. Pass 6: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003], Sorted array.

Figure 39 is a screen capture of the insertion sort in operation. Insertion sorting is
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reasonably fast for small lists (about 50 or so elements) and forms the basis of the
internal sorts in other routines that divide up the overall list into smaller lists, sort the
smaller lists, then uses a merge to collate back to the overall list (now sorted).

Listing 8. R code demonstrating the insertion sort.

### Straight Insertion Sort Function by: Theodore G. Cleveland 2017 -0317
rm(list=ls()) # clear the object list (i.e. deallocate and clear memory)
################################################################
insertSort <- function(array){
# Prepare the sort , need to know how many things and need a temporary store

swap <- numeric (0) # temporary store (aka swap location)
howMany <- length(array) # how many things to be sorted
for (j in 2: howMany) # select each position in turn

{
test <- 0 # set a test value , used to insert later
swap <- array[j] # current position to swap
for (i in seq(j-1,1,by=-1)) #find place to insert by ...

{
if (array[i] <= swap) # test if current position is bigger

{
test <- 1 # if true set test to 1, break inner loop
break
}

array[i+1] <- array[i] # otherwise exchange postions
}

if(test == 1) # if broke from loop , insert swap
array[i+1] <- swap

else
i = 0
array[i+1] <- swap # otherwise swap goes to first position

}
return(array) } # return result (sort in-place)

##############################################################
xarray <- c(1003 ,3.2 ,55.5 , -0.0001 , -6 ,666.6 ,102) # the array to sort
print(xarray)
xarray <- insertSort(xarray)
print(xarray)
##############################################################

Figure 39. Insertion Sort implemented in R.
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2.5.3 Merge Sort

A practical extension of these slow sorts is called the Merge Sort. It is an incredibly
useful method. One simply breaks up the items into smaller arrays, sorts those arrays -
then merges the sub-arrays into larger arrays (now already sorted), and finally merges
the last two arrays into the final, single, sorted array.

Here is a better description, again from Christian and Griffiths (2016):

“. . . . . . information processing began in the US censuses of the nineteenth
century, with the development, by Herman Hollerith and later by IBM, of
physical punch-card sorting devices. In 1936, IBM began producing a line
of machines called “collators” that could merge two separately ordered
stacks of cards into one. As long as the two stacks were themselves sorted,
the procedure of merging them into a single sorted stack was incredibly
straightforward and took linear time: simply compare the two top cards
to each other, move the smaller of them to the new stack you’re creating,
and repeat until finished.

The program that John von Neumann wrote in 1945 to demonstrate the
power of the stored-program computer took the idea of collating to its
beautiful and ultimate conclusion. Sorting two cards is simple: just put
the smaller one on top. And given a pair of two-card stacks, both of them
sorted, you can easily collate them into an ordered stack of four. Repeating
this trick a few times, you’d build bigger and bigger stacks, each one of
them already sorted. Soon enough, you could collate yourself a perfectly
sorted full deck – with a final climactic merge, like a riffle shuffle’s order-
creating twin, producing the desired result. This approach is known today
as Merge Sort, one of the legendary algorithms in computer science.”

There are several other variants related to Merge Sort; Quicksort and Heapsort being
relatives. The creation of a Merge Sort is left to the reader if there is a need, and
at this point we can just use the built-in sort() and/or order() functions in R –
which implements either a Shellsort (useful if character strings are to be sorted) or
Quicksort (used if numeric values are supplied). We also have to supply if we want
increasing or decreasing sorts.

2.5.4 Built-In R Sorts

Figure 40 illustrates using the built-in functions. For an ordinary sort, we simply use
the function name sort() and direct its output into an object (it can even be the
same vector as shown in the figure).

If we wish to sort several related columns, based on values in one of the columns,
it is easiest to construct a data frame (like a matrix), then order the contents based
on one of the columns, and send the results to another data frame, or we can send
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the result back to itself. Usually when we are manipulating multiple columns, we
are operating in a “relational database” kind of mindset, and it is probably to our
benefit to not destroy the original association structure. Be aware of the syntax of a
dataframe function, you will notice there is a comma that appears at the end of the
function that is important for the script to function.

For example, z <- z[order(xarray),] will function as shown,
whereas zztop <- z[order(xarray)] will not.

Figure 40. Sorting using built-in R functions.

Now if we return to the interpolation chapter just before this one, we can immedi-
ately see a need for sorting. The interpolation algorithm assumes that the explana-
tory structure (x-axis) is ordered, otherwise the interpolation equation will return
garbage.

I conclude the section on sorting with one more quoted section from Christian and
Griffiths (2016) about the value for sorting – which is already relevant to a lot of
computational hydraulics:

“The poster child for the advantages of sorting would be an Internet search
engine like Google. It seems staggering to think that Google can take the
search phrase you typed in and scour the entire Internet for it in less than
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half a second. Well, it can’t – but it doesn’t need to. If you’re Google,
you are almost certain that (a) your data will be searched, (b) it will be
searched not just once but repeatedly, and (c) the time needed to sort is
somehow “less valuable” than the time needed to search. (Here, sorting
is done by machines ahead of time, before the results are needed, and
searching is done by users for whom time is of the essence.) All of these
factors point in favor of tremendous up-front sorting, which is indeed what
Google and its fellow search engines do.”

2.6 Exercise Set

1. Build a function getDensityUS() that searches the table in Figure 36 and re-
turns the density of water in US customary units for a value of temperature
supplied in degrees Farenheight.

Submit your code and screen captures of the density for temperatures of 43o F ,
146o F , and 210o F .

2. Later in the class we will need functions to return viscosity to compute head
losses in pipe networks.
Build and test a function getKinViscosityUS() that searches the table in Fig-
ure ?? and returns the kinematic viscosity of water in US customary units for
a value of temperature supplied in degrees Farenheight

Submit the code and screen captures of the kinematic viscosity for tempera-
tures of 43o F , 146o F , and 210o F .

3. Build and test a function getKinViscositySI() that searches the table in Fig-
ure 36 and returns the kinematic viscosity of water in SI units for a value of
temperature supplied in degrees Celsius

Submit the code and screen captures of the kinematic viscosity for tempera-
tures of 13o C, 66o C, and 97o C.

This exercise set is also located on the class server as ES-1.
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3 Numerical Methods – Integrals, Derivatives, and

Newton’s Method

3.1 Numerical Integration of Functions

Numerical integration is the numerical approximation of

I =

∫ b

a

f(x)dx (7)

Consider the problem of determining the shaded area under the curve y = f(x) from
x = a to x = b, as depicted in Figure 41, and suppose that analytical integration is
not feasible.

Figure 41. Schematic of Panels for Numerical Integration. .

The function may be known in tabular form from experimental measurements or it
may be known in an analytical form. The function is taken to be continuous within
the interval a < x < b. We may divide the area into n vertical panels, each of width
∆x = (b− a)/n, and then add the areas of all strips to obtain A ≈

∫
ydx.

A representative panel of area Ai is shown with darker shading in the figure. Three
useful numerical approximations are listed in the following sections. The approxima-
tions differ in how the function is represented by the panels — in all cases the function
is approximated by known polynomial models between the panel end points.

In each case the greater the number of strips, and correspondingly smaller value of ∆x,
the more accurate the approximation. Typically, one can begin with a relatively small
number of panels and increase the number until the resulting area approximation stops
changing.
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3.1.1 Rectangular Panels

Figure 42 is a schematic of a rectangular panels. The figure is assuming the function
structure is known and can be evaluated at an arbitrary location in the ∆x dimension.
Each panels is treated as a rectangle, as shown by the representative panel whose

Figure 42. Rectangular Panel Schematic..

height ym is chosen visually so that the small cross-hatched areas are as nearly equal
as possible. Thus, we form the sum

∑
ym of the effective heights and multiply by ∆x.

For a function known in analytical form, a value for ym equal to that of the function
at the midpoint xi + ∆x/2 may be calculated and used in the summation.

For tabulated functions, we have to choose to either take ym as the value at the left
endpoint or right endpoint. This limitation is often quite handy when we are trying
to integrate a function that is integrable, but undefined on one endpoint.

Lets try some examples in R.
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Problem: Find the area under the curve y = x
√

1 + x2 from x = 0 to x = 2.

Solution: One solution is shown in Figure 43,which is a screen capture of a rudi-
mentary code that implements the rectangular panel method.8

Figure 43. Rectangular panel example showing code and resulting computed area using just 4 pan-
els..

The script does not implement any kind of error checking – we could enter text values
for the lower and upper values of x as well as the number of panels to use, and the
script would attempt to run. A better version would force us to enter numeric values,
and check for undefined ranges and such; devotion to error trapping is typical for
professional programs where you are going to distribute executable modules and not
expect the end user to be a programmer.

8The exact solution is A=3.393477
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For the time being, we will accept this approach (error trapping is left as an exercise),
however in your own scripts you should implement error traps where possible – you
may start without them but as you maintain your scripts, you will learn where data
entry errors occur and trap them.9

The actual listing depicted in Figure 43 is shown in Listing 9

Listing 9. R code demonstrating Rectangular Panel Numerical Integration.

# R script to implement rectangular panel numerical integration
################################# NOTE ####################################
## The interactive input requires the script to be sourced #
# In R console the command line would be #
# source(’PATH -TO-THE -FILE/RectangularPanelExample.R’) #
# where PATH -TO -THE -FILE is replaced with the actual path on your machine #
###########################################################################
# Function to be integrated (modify as needed) #
###########################################################################
y <- function(x){

y <- x * sqrt (1+x^2)
return(y)

}
###########################################################################
# Get lower ,upper and how many panels from user #
###########################################################################
xlow <- readline ("What is the lower limit of integration? ")
xhigh <- readline ("What is the upper limit of integration? ")
howMany <- readline ("How many panels? ")
# Convert the strings into numeric values
xlow <- as.numeric(unlist(strsplit(xlow , ",")))
xhigh <- as.numeric(unlist(strsplit(xhigh , ",")))
howMany <- as.numeric(unlist(strsplit(howMany , ",")))
# Compute some constants
deltax <- (xhigh - xlow)/howMany
accumulated_area <- 0.0 # initialize the accumulator
xx <- xlow+deltax /2 # initial value for x at middle of left -most panel
##########################################################################
# The actual numerical method #
##########################################################################
for (i in 1: howMany){

accumulated_area <- accumulated_area + deltax*y(xx) # y is the integrand function
xx <- xx+deltax

}
##########################################################################
# Report Result #
##########################################################################
message (" Approximate value of integral from ",xlow ," to ",xhigh ," is: ",accumulated_area)

Figure 44 is the same program run using 4,400, and 4000 panels observe the difference
in computed area as well as the results closeness to the exact solution.

3.1.2 Trapezoidal Panels

The trapezoidal panels are approximated as shown in Figure 45. The area Ai is the
average height (yi+yi+1)/2 times ∆x. Adding the areas gives the area approximation
as tabulated. For the example with the curvature shown, the approximation will be
on the low side. For the reverse curvature, the approximation will be on the high
side. The trapezoidal approximation is commonly used with tabulated values.

The same example as presented for rectangular panels is repeated, except using trape-
zoidal panels. The code is changed because we will evaluate at each end of the
panel (so no fussing to find an intermediate estimate for where to evaluate the func-
tion).

9For example, traps are used to force the user to enter a value that actually is meaningful, or select
a default value, or internally prevent division by zero.
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Figure 44. Rectangular panel example showing difference in computed area using 4, 400, and 4000
panels. The 4000 panel result is essentially equivalent to the exact solution. Such convergence to exact
values is typical.

Figure 45. Trapezoidal Panel Schematic..
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Figure 46 illustrates the trapezoidal method for approximating an integral. In the
example, the left and right panel endpoints in x are set as separate variables xleft and
xright and incremented by ∆x as we step through the count-controlled repetition to
accumulate the area. The corresponding y values are computed within the loop and
averaged, then multiplied by ∆x and added to the accumulator. Finally the x values
are incremented.

Figure 46. Trapezoidal panel example using 4, 400, and 4000 panels..

The actual listing depicted in Figure 46 is shown in Listing 10. Observe (at least for
this example) the method appears more accurate that the rectangular method for the
same number of panels, however also observe we are making twice as many function
calls.
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Listing 10. R code demonstrating Trapezoidal Panel Numerical Integration.

# R script to implement trapezoidal panel numerical integration
################################# NOTE ####################################
## The interactive input requires the script to be sourced #
# In R console the command line would be #
# source(’PATH -TO-THE -FILE/TrapezoidalPanelExample.R’) #
# where PATH -TO -THE -FILE is replaced with the actual path on your machine #
###########################################################################
# Function to be integrated (modify as needed) #
###########################################################################
y <- function(x){

y <- x * sqrt (1+x^2)
return(y)

}
###########################################################################
# Get lower ,upper and how many panels from user #
###########################################################################
xlow <- readline ("What is the lower limit of integration? ")
xhigh <- readline ("What is the upper limit of integration? ")
howMany <- readline ("How many panels? ")
# Convert the strings into numeric values
xlow <- as.numeric(unlist(strsplit(xlow , ",")))
xhigh <- as.numeric(unlist(strsplit(xhigh , ",")))
howMany <- as.numeric(unlist(strsplit(howMany , ",")))
# Compute some constants
deltax <- (xhigh - xlow)/howMany
accumulated_area <- 0.0 # initialize the accumulator
xleft <- xlow
xright <- xleft + deltax
##########################################################################
# The actual numerical method #
##########################################################################
for (i in 1: howMany){

yleft <- y(xleft)
yright <- y(xright)
accumulated_area <- accumulated_area + (yleft+yright)*deltax /2
xleft <- xleft + deltax
xright <- xright + deltax

}
##########################################################################
# Report Result #
##########################################################################
message (" Approximate value of integral from ",xlow ," to ",xhigh ," is: ",accumulated_area)

3.1.3 Parabolic Panels

Parabolic panels approximate the shape of the panel with a parabola. The area
between the chord and the curve (neglected in the trapezoidal solution) may be ac-
counted for by approximating the function with a parabola passing through the points
defined by three successive values of y.

This area may be calculated from the geometry of the parabola and added to the
trapezoidal area of the pair of strips to give the area ∆A of the pair as illustrated.
Adding all of the ∆As produces the tabulation shown, which is known as Simpson’s
rule. To use Simpson’s rule, the number n of strips must be even.

The same example as presented for rectangular panels is repeated, except using
parabolic panels. The code is changed yet again because we will evaluate at each
end of the panel as well as at an intermediate value.

Figure 48 is a screen capture of a parabolic panel integration. The actual script is
also listed in Listing 11. In the script, I substituted ∆x

2
for ∆x from Figure 47, so the

accumulation line has a 6 in the denominator (rather than the 3 in the figure).10

Observe that the estimated integral for 400 and 4000 panels is nearly the same,

10. . . ∆x
2 ×

1
3 = . . . ∆x

6
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Figure 47. Parabolic Panel Schematic..

Figure 48. Parabolic panel example using 4, 400, and 4000 panels.
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suggesting no need to go beyond a certain number of panels. Algorithms that detect
when to stop adding panels exist and would be implemented in many scientific and
engineering programming applications.

Listing 11. R code demonstrating Parabolic Panel Numerical Integration.

# R script to implement trapezoidal panel numerical integration
################################# NOTE ####################################
## The interactive input requires the script to be sourced #
# In R console the command line would be #
# source(’PATH -TO-THE -FILE/RectangularPanelExample.R’) #
# where PATH -TO -THE -FILE is replaced with the actual path on your machine #
###########################################################################
# Function to be integrated (modify as needed) #
###########################################################################
y <- function(x){

y <- x * sqrt (1+x^2)
return(y)

}
###########################################################################
# Get lower ,upper and how many panels from user #
###########################################################################
xlow <- readline ("What is the lower limit of integration? ")
xhigh <- readline ("What is the upper limit of integration? ")
howMany <- readline ("How many panels? ")
# Convert the strings into numeric values
xlow <- as.numeric(unlist(strsplit(xlow , ",")))
xhigh <- as.numeric(unlist(strsplit(xhigh , ",")))
howMany <- as.numeric(unlist(strsplit(howMany , ",")))
# Compute some constants
deltax <- (xhigh - xlow)/howMany
accumulated_area <- 0.0 # initialize the accumulator
xleft <- xlow
xmiddle <- xleft + deltax /2
xright <- xleft + deltax
##########################################################################
# The actual numerical method #
##########################################################################
for (i in 1: howMany){

yleft <- y(xleft)
ymiddle <- y(xmiddle)
yright <- y(xright)
accumulated_area <- accumulated_area + (yleft +4* ymiddle+yright)*deltax /6
xleft <- xright
xmiddle <- xleft + deltax /2
xright <- xleft + deltax

}
##########################################################################
# Report Result #
##########################################################################
message (" Approximate value of integral from ",xlow ," to ",xhigh ," is: ",accumulated_area)

If we study all the forms of the numerical method we observe that the numerical
integration method is really the sum of function values at specific locations in the
interval of interest, with each value multiplied by a specific weight. In this develop-
ment the weights were based on polynomials, but other method use different weighting
functions. An extremely important method is called gaussian quadrature, which is
outside the scope of the discussion herein — Gaussian quadrature routines are readily
available within R. The method is valuable because one can approximate convolution
integrals quite effectively using quadrature routines, while the number of function
evaluations for a polynomial based approximation could become hopeless.

When the function values are tabular, we are going to have to accept the rectangular
(with adaptations) and trapezoidal as our best tool to approximate an integral because
we don’t have any really effective way to evaluate the function between the tabulated
values – if we were to use our interpolation routine from earlier, its really going to be
a kind of trapezoidal rule anyway.
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3.2 Exercise Set 2

1. Write a script to approximate
∫ 3.4

1.8
exdx using rectangular panels.

Run your script using 6 and 600 panels.

(a) What is the analytical solution (e.g. do the calculus!)?

(b) What is the percent error between the analytical solution and the approx-
imation using 6 panels?

(c) What is the percent error between the analytical solution and the approx-
imation using 600 panels?

2. Write a script to approximate
∫ 3.4

1.8
exdx using trapezoidal panels.

Run your script using 6 and 600 panels.

(a) What is the analytical solution (e.g. do the calculus!)?

(b) What is the percent error between the analytical solution and the approx-
imation using 6 panels?

(c) What is the percent error between the analytical solution and the approx-
imation using 600 panels?

3. Based on the previous two exercises, which method do you think is more accu-
rate for a given panel count? Why (do you think so)?

4. Write a script to approximate
∫ 1

0
ln(x)dx using rectangular panels.

Run your script using 6 and 600 panels.

(a) What is the analytical solution (e.g. do the calculus!)?

(b) What is the percent error between the analytical solution and the approx-
imation using 6 panels?

(c) What is the percent error between the analytical solution and the approx-
imation using 600 panels?

5. Write a script to approximate
∫ 1

0
ln(x)dx using trapezoidal panels.

Run your script using 6 and 600 panels.

(a) Did you get an error message — why?

This exercise set is also located on the class server as ES-2
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3.3 Numerical Integration of Tabular Data

This subsection is going to work with tabular data — different from function evalua-
tion, but similar. To be really useful, we need to learn how to read data from a file —
manually entering tabular data is really time consuming, error prone, and just plain
idiotic.

So in this subsection we will first learn how to read data from a file into a list, then
we can process the list as if it were a function and integrate its contents.

3.3.1 Reading from a file – open, read, close files

R can read from an ASCII file (or even an Excel .csv file) using a multitude of meth-
ods. Common methods are read.table(...), read.table(...), read.table(...),
read.table(...), and read.table(...).

One can also use primatives11 to read individual rows in a file and process them.12

First, lets create a file named MyFile.txt. The extension is important so that we can
examine the file with other tools (a text editor) and remember that it is an ASCII
file. The contents of MyFile.txt are:

1 , 1

2 , 4

3 , 9

4 , 16

5 , 25

To read the contents into an R script we have to do the following:

1. Open a connection to the file — this is a concept common to all languages, it
might be called something different, but the program needs to somehow know
the location and name of the file.

2. Read the contents into an object — we have a lot of control on how this gets
done, for the time being we won’t exercise much control yet. When you do
substantial programs, you will depend on the control of the reads (and writes).

3. Disconnect the file — this too is common to all languages. Its a really easy step
to forget. Not a big deal if the program ends as planned but terrible if there
is a error in the program and the connection is still open. Usually noting bad
happens, but with an open connection it is possible for the file to get damaged.
If that file represents millions of customers data, that’s kind of a problem.

11Jargon to describe lower level tools within R
12We will use this approach later in the book – the interactive prompt and reads in the prior

subsection are similar to this approach where input is read into a string, then the string is converted
into the appropriate type of object (numeric or text).
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The read.table class of functions handles all three of these steps for us, we do have
to provide the filename and some information about the file structure. Later when
we are doing network simulation and other hydraulic techniques, different parts of
an input file will be read line-by-line and processed — for this task we will need to
handle these three steps using primatives.

Figure 49 illustrates the process. The input file has 5 lines, these get read then echoed
(printed) back to us. The actual script is pretty simple, notice how the filepath

and filename character variables are defined, then pasted together to produce a full
absolute file name.13

Listing 12 is a listing of the script used in Figure 49. The analyst should be able
to deduce that the filenames could be read from user input using the prompting
technique used in the earlier subsections, so if one is going to process a lot of similar
files the explicit naming could be replaced with variable naming – it would probably
be a good idea to confine the files to a reasonably memorable path.

Listing 12. R code demonstrating Reading from a File.

# R script to illustrate reading from a file using read.table
# The script is intentionally complicated to illustrate the
# three steps: open connection , read into object , close connection
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /3-

Differentation/RScripts"
filename <- "MyFile.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Here we open the connection to the file (within read.table)
# Then the read.table attempts to read the entire file into an object named zz
# Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
# Echo zz
print(zz)

Now that we can read a file, we are now able to integrate tabular data.

3.4 Integrating tabular data

Suppose instead of a function we only have tabulations and wish to estimate the
area under the curve represented by the tabular values. Then our integration rules
from the prior sections still work more or less, except the rectangular panels will have
to be shifted to either the left edge or right edge of a panel (where the tabulation
exists).

Lets just examine an example. Suppose some measurement technology produced
Table 1 a table of related values. The excitation variable is x and f(x) is the re-
sponse.

13A file name can specify all the directory names starting from the root of the tree; then it is
called an absolute file name. Or it can specify the position of the file in the tree relative to a
default directory; then it is called a relative file name. On the computer I used to write this
workbook, the symbol ˜ , is the root to my user account, then the remaining directories from that
location are explicitly listed. The actual absolute name is /Users/cleveland/Dropbox/1-CE-TTU-
Classes/CE4333-PCH-R/3-Readings/PCHinR-LectureNotes/3-Differentation/RScripts
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Figure 49. Rudimentary file reading.

Table 1. Tabular values of an excitation–response relationship.

x f(x)

1.0 1.543
1.1 1.668
1.2 1.811
1.3 1.971
1.4 2.151
1.5 2.352
1.6 2.577
1.7 2.828
1.8 3.107

To integrate this table using the trapezoidal method is straightforward. We will
modify our earlier code to read the table (which we put into a file), and compute the
integral.
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Figure 50 is a screen capture of a script that implements the file read and the numerical
integration. The conversion of the method from the functional form in the previous
section is pretty straightforward. The main nusiance here is the syntax required
to access the “x” values and the “y” values. In R the most generic approach is
object$name, where object is the data frame name, and name is the variable (column)
name. If you don’t use headers, R assigns names as V1,V2,...,Vmax.

Figure 50. Integrating tabular data..

Realistically the only other simple integration method for tabular data is the rectan-
gular rule, either using the left edge of a panel or the right edge of a panel (and you
could do both and average the result which would result in the same outcome as the
trapezoidal method). For the sake of completeness lets do both and then compare
the results from all four approaches (trapezoidal, rectangular-left, rectangular-right,
average rectangular).

First, Figure 51 implements the file read and tabular integration using the rectangular
panel method, evaluating the function at the left edge of each panel.
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Figure 51. Integrating tabular data. Rectangular panel, evaluate at left edge..

Next, Figure 52 implements the file read and tabular integration using the rectangular
panel method, evaluating the function at the left edge of each panel.

Now lets compare the results from using the three (four) approaches. Table 2 are the
results by method.

Table 2. Comparison of tabular integration.

Method Computed Area

Trapezoidal Panels 1.7683
Rectangular - Left Edge 1.6901
Rectangular - Right Edge 1.8465
Arithmetic Mean Rectangular 1.7683

What Table 2 illustrates is that the trapezoidal rule is simply the average of the
rectangular rule evaluated at first the left-edge then the right-edge of a panel.
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Figure 52. Integrating tabular data. Rectangular panel, evaluate at right edge..

3.5 Numerical Differentiation

Similar in context to numerical integration is approximation of derivatives. If the
functions are representable as functions, then differencing degenerates into the selec-
tion of an appropriate difference formula. If the function is tabular, the same decision
is presented, but we have to pay additional attention to the quantity of observations
available.

3.6 Difference Approximations for Tabulated Data

Here we will introduce differencing by an example. Suppose we want to convert a
cumulative data series into an incremental data series. It is operationally related to
numerical differentiation.
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As an example (leading to an algorithm) consider the cumulative rainfall time series
in Table 3.

We shall import this data into R, then plot the data, then construct a computational
procedure to extract the incremental values from the cumulative values. To load the
data into R we start the program and then read the contents of a data file that
contains the data into R, then we will introduce the plotting tools in R. In addition
to plotting, we will also learn about headers and attaching an object (which gives
access to header names rather than the object$name structure.

Table 3. Cumulative Rainfall Time Series.

hours cumulative rain
0.0 0.00
0.5 1.06
1.0 2.99
1.5 4.80
2.0 4.80
2.5 4.80
3.0 4.80
3.5 4.80
4.0 4.80
4.5 4.80
5.0 4.80
5.5 4.80

The plot suggests that the values are accumulated at the end of the time interval, thus
the value accumulated is some average “rate” multiplied by the time interval. The
line segment between each point is called a “secant” line. The slope of each secant
line, provides that average “rate”. So a fundamental computational step will be a
function that computes the slope given any two points (assumed to be adjacent —
so that’s why sorting can become important, although the program doesn’t actually
care).

3.6.1 Slope of a Secant Line

slopeOfSecant is a prototype function that we write to that computes the slope of the
secant line through two known points on a function f(x1) and f(x2). The function
could be tabular or evaluated. The script assumes tabular in that the function is
evaluates external to slopeOfSecant.

Listing 13. R code demonstrating the prototype function slopeOfSecant.

############## slope function prototype ####################
slopeOfSecant <-function(f1 ,f2,x1,x2){

slopeOfSecant <- (f2-f1)/(x2-x1);
return(slopeOfSecant)

}
#######################################################
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Figure 53. Plot of Cumulative Rainfall Time Series.

This slope is also a first order approximation of a derivative (forward, backward, and
centered differences depending on values supplied). This function can then be used
to compute “derivatives” of data series using a disaggregation function.

As an illustrative example, if we present parts of the cumulative rainfall data series
we can recover the average rate between the inputs. Figure 54 is a screen capture of
such a test.

3.6.2 Disaggregation

disaggregate is a prototype function that computes the slopes of the secant lines
joining adjacent pairs of input data. Depending on the way the input arrays are
presented to the disaggregate function, the function returns either the backward
difference approximation to the function’s derivative or if an index is presented in-
stead of actual t values, then the function returns the incremental values that when
aggregated reconstruct the original input function.

Listing 14. R code demonstrating the prototype function disaggregate().

######## disaggregate function prototype ###########
# returns a vector of slopes computed by sloepOfSecant
disaggregate <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 2:n){dfdx[i]<-slopeOfSecant(f[i-1],f[i],x[i-1],x[i]);};
dfdx[1]<-0;
return(dfdx)}

############################################################
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Figure 54. Script with slopeOfSecant prototype inserted and validation that we recover rate and can
re-accumulate correctly.

3.6.3 Numerical Differentiation

A related concept is to determine the average rate for the time interval, the principal
difference is that the rate occurs during the entire time interval and should be assigned
to the beginning of the interval instead of the end of the interval. A subtle change in
the disaggregate function can accomplish the task, we will name that new function
brbt. The name is a nemonic for “backward-rate, backward-time” differencing.

Listing 15. R code demonstrating the prototype function brbt().

########### backward rate , backward time prototype ###########
brbt <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 1:(n-1)){dfdx[i]<-slopeOfSecant(f[i],f[i+1],x[i],x[i+1]) ;};
dfdx[n]<-0;
return(dfdx)}

############################################################

Finally, putting everything together, we have the toolkit to determine the incremen-
tal rates (which is an approximation to the derivative of the cumulative rates) and
incremental depths which are these individual rates multiplied by the length of the
time interval. Figure 55 is a screen capture of the R script that implements these
functions on the tabular data.

Listing 16 is a listing of the R script that produced Figure 55. The intermediate steps
from Figure 54 is removed in this listing.
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Figure 55. Plot of Cumulative Rainfall Time Series (BLUE), Incremental Depth Time Series
(GREEN), and Average Rate Time Series (RED).

Listing 16. R code demonstrating Numerical Differencing.

# R script to illustrate numerical differencing
rm(list=ls()) # clear all objects
############ Prototype (forward define) Functions #########
############## slope function prototype ####################
slopeOfSecant <-function(f1 ,f2,x1,x2){

slopeOfSecant <- (f2-f1)/(x2-x1);
return(slopeOfSecant)}

######## disaggregate function prototype ###########
disaggregate <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 2:n){dfdx[i]<-slopeOfSecant(f[i-1],f[i],x[i-1],x[i]);};
dfdx[1]<-0;
return(dfdx)}

########### backward rate , backward time prototype ###########
brbt <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 1:(n-1)){dfdx[i]<-slopeOfSecant(f[i],f[i+1],x[i],x[i+1]) ;};
dfdx[n]<-0;
return(dfdx)}

##############################################################

################ Build the filename #########################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /3-

Differentation/RScripts"
filename <- "cumulative_rainfall.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Here we open the connection to the file (within read.table)
# Then the read.table attempts to read the entire file into an object named zz
# Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=TRUE ,sep=",") # comma seperated ASCII , No header
attach(zz) # attach associates the column names with the data below them.
## summary(zz) # useful to be sure data were imported correctly
incremental_depth <- disaggregate(cumulative_rain ,hours ,dfdx)
incremental_rate <- brbt(cumulative_rain ,hours ,dfdx)
dt <- 0.5 # how long each interval , make adaptive as exercise
incremental_depth <- incremental_depth*dt
print(cbind(zz ,incremental_rate ,incremental_depth))
################ Build the Plot #####################################
plot(hours ,cumulative_rain ,xlab="Time(hours)",ylab=" Cumulative Depth
(inches)",type="l",lwd=5,col="Blue",tck=1)
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lines(hours ,incremental_depth*dt ,pch=16,col=" green",lwd=3)
lines(hours ,incremental_rate ,pch=16,col="red",lwd=2,type="s")
text (3,4.1," Cumulative Rain",col="blue")
text (3,3.1," Incremental Rain",col=" green")
text (3,2.1," Incremental Rate",col="red")
#####################################################################
detach(zz) #deallocate the zz object

3.6.4 Aggregation

Aggregation is the compliment of disaggregation; instead of finding differences we are
trying to produce cumulatives from incremental values or rates. Aggregation is to
integration as disaggregation is to differentiation. Simple aggregation functions are
straightforward to build. Numerical integration (already introduced) is a bit more
challenging because there are many different ways to compute areas from tabular data
– we will illustrated rectangular, trapezoidal, and parabolic panels.

We can insert a prototype aggregate function that simply adds elements in a series
to prior elements and stores the value in another series. Another name for this kind
of arithmetic is a running sum. Functionally, it is rectangular panel (evaluate from
the left), numerical integration.

Listing 17. R code demonstrating the prototype function aggregate().

########### aggregate function prototype ###########
aggregate <-function(vector1 ,vector2){
n<-length(vector1)
# fill vector2 with zeros
vector2 <-rep(0,n)
vector2[1]<- vector1 [1]+0.0
for(i in 2:n)vector2[i]<-vector2[i-1]+ vector1[i]
return(vector2)}
###############################################

We add this function to the prototype list ate the top of the script and can run To
illustrate the use of aggregate we will aggregate the incremental depths into the
cumulative rainfall – we should recover the original cumulative rainfall series that
was originally supplied.

3.7 Exercises

1. Add the aggregate prototype function to collection of prototype functions in
the script. The add some code like:

new_cum_rain<-aggregate(incremental_depth,dummy)

plot(hours,cumulative_rain,xlab="Time(hours)",ylab="Cumulative Depth

(inches)",type="l",lwd=5,col="Blue",tck=1)

lines(hours,new_cum_rain,col="red",lwd=1.5)

Demonstrate that the two series are identical (e.g. plotting on top of one an-
other).
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2. (Advanced) Modify the disaggregate() prototype function to automatically
determine the time spacing (x) and perform the correct multiplication within
the function to return the correct increments. You only have to add one line of
code to the prototype function at

for (i in 2:n){dfdx[i]<-slopeOfSecant(f[i-1],f[i],x[i-1],x[i]);

deltax <- # you need to define this in terms of x[i] and x[i-1]!

dfdx[i]<- deltax*dfdx[i];};

3.8 Finite-Difference Formulas

What we have just done is to explore the use of finite-difference approximations for
derivatives. Some common formulas for difference formulas are listed below (without
derivation – you should be able to find explanation in any numerical methods text).
All the difference equations presented here are the result of truncated Taylor series
expansions about x. The “order” refers to the magnitude of truncation error, and
this magnitude is proportional to the step size (∆x) raised to a power (the order).
Truncation error decreases as the step size is decreased, but one is approaching a
divide-by-zero situation (because numerical methods don’t do limits just yet!).

3.8.1 First Derivatives

Equation 8 is a first-order backwards difference.

df

dx
≈ f(x)− f(x−∆x)

∆x
(8)

Equation 9 is a first-order backwards difference.

df

dx
≈ f(x+ ∆x)− f(x)

∆x
(9)

Equation 10 is a second-order central difference.

df

dx
≈ f(x+ ∆x)− f(x−∆x)

2∆x
(10)

3.8.2 Second Derivatives

Equation 11 is a second-order central difference.

d2f

dx2
≈ f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
(11)
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3.8.3 Third Derivatives

Equation 12 is a sixth-order central difference.

d3f

dx3
≈ f(x+ 2∆x)− 2f(x+ ∆x) + 2f(x−∆x) + f(x− 2∆x)

2∆x3
(12)

The procedure to generate such difference formulas is general and can supply esti-
mates with approximations of any degree. The accuracy depends on the location
and number of field variable values involved in the approximation. The selection of
a formula is not at all trivial (especially with tabulations), but beyond the scope of
this handbook.

Despite known complications, this is a general tool used in computational hydraulics
and we will use it throughout the remainder of the handbook – in some examples
it will not be obvious that it is finite differencing, and in others it will be explicitly
obvious. The next section introduces Newton’s method, and finite-differences will be
used to approximate the derivative (Quasi-Newton) to implement the method. The
procedure is really quite common and imbedded in a lot of the computational tools
we use professionnaly.
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3.9 Single Variable Quasi-Newton Methods

The application of fundamental principles of modeling and mechanics often leads to
an algebraic or transcendental equation that cannot be easily solved and represented
in a closed form. In these cases a numerical method is required to obtain an estimate
of the root or roots of the expression.

Newton’s method is an iterative technique that can produce good estimates of so-
lutions to such equations. The method is employed by rewriting the equation in
the form f(x) = 0, then successively manipulating guesses for x until the function
evaluates to a value close enough to zero for the modeler to accept.

Figure 56 is a graph of some function whose intercept with the x−axis is unknown.
The goal of Newton’s method is to find this intersection (root) from a realistic first
guess. Suppose the first guess is x1, shown on the figure as the right-most specific
value of x. The value of the function at this location is f(x1). Because x1 is supposed
to be a root the difference from the value zero represents an error in the estimate.
Newton’s method simply provides a recipe for corrections to this error.

Figure 56. Graph of Arbitrary Function..

Provided x1 is not near a minimum or maximum (slope of the function is not zero)
then a better estimate of the root can be obtained by extending a tangent line from
x1, f(x1) to the x-axis. The intersection of this line with the axis represents a better
estimate of the root.

This new estimate is x2. A formula for x2 can be derived from the geometry of
the triangle x2,f(x1),x1. Recall from calculus that the tangent to a function at a
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particular point is the first derivative of the function. Therefore, from the geometry
of the triangle and the definition of tangent we can write,

tan(θ) =
df

dx

∣∣∣∣∣
x1

=
f(x1)

x1 − x2

(13)

Solving the equation for x2 results in a formula that expresses x2 in terms of the first
guess plus a correction term.

x2 = x1 −
f(x1)
df
dx
|x1

(14)

The second term on the right hand side is the correction term to the estimate on the
right hand side. Once x2 is calculated we can repeat the formula substituting x2 for
x1 and x3 for x2 in the formula. Repeated application usually leads to one of three
outcomes:

1. a root;

2. divergence to ±∞; or

3. cycling.

These three outcomes are discussed below in various subsections along with some
remedies.

The generalized formula is

xk+1 = xk −
f(xk)
df
dx
|xk

(15)

If the derivative is evaluated using analytical derivatives the method is called Newton’s
method, if approximations to the derivative are used, it is called a quasi-Newton
method.

3.9.1 Newton’s Method — Using analytical derivatives

This subsection presents an example in R of implementing Newton’s method with
analytical derivatives. The algorithm itself is:

1. Write the function in proper form, and code it into a computer.

2. Write the derivative in proper form and code it into a computer.

3. Make an initial guess of the solution (0 and 1 are always convenient guesses).

4. Evaluate the function, evaluate the derivative, calculate their ratio.

5. Subtract the ratio from the current guess and save the result as the update.
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6. Test for stopping:

(a) Did the update stay the same value? Yes, then stop, probably have a
solution.

(b) Is the function nearly zero? Yes, then stop we probably have a solution.

(c) Have we tried too many updates? Yes, then stop the process is probably
cycling, stop.

7. If stopping is indicated proceed to next step, otherwise proceed back to step 4.

8. Stopping indicated, report last update as the result (or report failure to find
solution), and related information about the status of the numerical method.

The following example illustrates these step as well as a R implementation of Newton’s
method.

Suppose we wish to find a root (value of x) that satisfies Equation 16.

f(x) = ex − 10cos(x)− 100 (16)

Then we will need to code it into a script. Here is a code fragment that will work:

Listing 18. R code fragment for the function calculation.

# Define Function Here
func <- function(x)
{

func <- exp(x) -10*cos(x) -100;
return(func);

}

The next step is to code the derivative. In this case, Equation 17 is the derivative of
Equation 16.

df

dx
|(x) = ex + 10 sin(x) (17)

A code fragment to compute the value of the derivative at any value of x that will
work is:

Listing 19. R code fragment for the derivative calculation.

# Define Derivative Here
dfdx <- function(x)
{

dfdx <- exp(x) + 10*sin(x);
return(dfdx);

}

Next we will need script to read in an initial guess, and ask us how many trials we
will use to try to find a solution, as well as how close to zero we should be before we
declare victory.
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Listing 20. R code fragment for reading input data from the programmer.

# Read some values from the console
message(’Enter an initial guess for X for Newton method : ’)
xnow <- as.numeric(readline ())
message(’Enter iteration maximum : ’)
HowMany <- as.numeric(readline ())
message(’Enter a tolerance value for stopping (e.g. 1e-06) : ’)
HowSmall <- as.numeric(readline ())
## There are several other ways to make these reads! The scan() function would probably

also work.

The use of HowSmall; is called a zero tolerance. We will use the same numerical value
for two tolerance tests. Also notice how we are using error traps to force numeric
input. Probably overkill for this example, but we already wrote the code in an earlier
chapter, so might as well use the code. Professional codes do a lot of error checking
before launching into the actual processing — especially of the processing part is
time consuming, its worth the time to check for obvious errors before running far
a few hours then at some point failing because of an input value error that was
predictable.

Now back to the tolerance tests. The first test is to determine if the update has
changed or not. If it has not, we may not have a correct answer, but there is no point
continuing because the update is unlikely to move further. The test is something
like

IF |xk+1 − xk| < Tol. THEN Exit and Report Results

The second test is if the function value is close to zero. The structure of the test is
similar, just an different argument. The second test is something like

IF |f(xk+1)| < Tol. THEN Exit and Report Results

One can see from the nature of the two tests that a programmer might want to make
the tolerance values different. This modification is left as a reader exercise.

Checking for maximum iterations is relatively easy, we just include code that checks
for normal exit the loop.14

Now we simply connect the three fragments, and we have a working R script that
implements Newton’s method for Equation 16. Listing 21 is the entire code module
that implements the method, makes the various tests, and reports results. Figure 57
is a screen capture of the program run in R.

The example is specific to the particular function provided, but the programmer could
move the two functions func and dfdx into a user specified module, and then load
that module in the program to make it even more generic. The next section will use
such an approach to illustrate the ability to build a generalized Newton method and
only have to program the function itself.

14Rather than breaking from the loop.
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Listing 21. R code demonstrating Newton’s Method calculations.

# Newtons Method in R
# Define Function Here
func <- function(x)
{

func <- exp(x) -10*cos(x) -100;
return(func);

}
# Define Derivative Here
dfdx <- function(x)
{

dfdx <- exp(x) + 10*sin(x);
return(dfdx);

}
# Newton ’s Method Here
# Read some values from the console
message(’Enter an initial guess for X for Newton method : ’)
xnow <- as.numeric(readline ())
message(’Enter iteration maximum : ’)
HowMany <- as.numeric(readline ())
message(’Enter a tolerance value for stopping (e.g. 1e-06) : ’)
HowSmall <- as.numeric(readline ())
# Now start the iterations
for (i in 1: HowMany) {

xnew <- xnow - func(xnow)/dfdx(xnow)
# test for stopping

if (abs(xnew -xnow) < HowSmall){
message(’Update not changing ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
if (abs(func(xnew) < HowSmall)) {

message(’Function value close to zero ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
# next iteration
xnow <- xnew
}
if (i >= HowMany){

message(’Iteration limit reached ’)
print(cbind(xnow ,xnew ,func(xnew)))

}

3.9.2 Newton’s Method — Using Finite-Differences to estimate deriva-
tives

A practical difficulty in using Newton’s method is determining the value of the deriva-
tive in cases where differentiation is difficult. In these cases we can replace the deriva-
tive by a difference equation and then proceed as in Newton’s method.

Recall from calculus that the derivative was defined as the limit of the difference
quotient:

df

dx
|x = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(18)

A good approximation to the derivative should be possible by using this formula with
a small, but non-zero value for ∆x.

df

dx
|x ≈

f(x+ ∆x)− f(x)

∆x
(19)

When one replaces the derivative with the difference formula the root finding method
the resulting update formula is
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Figure 57. Several runs of the program using the analytical derivative to illustrate different kinds of
responses..

xk+1 = xk −
f(xk)∆x

f(xk + ∆x)− f(xk)
(20)

This root-finding method is called a quasi-Newton method.

Listing 22 is the code fragment that we change by commenting out the analytical
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derivative and replacing it with a first-order finite difference approximation of the
derivative. The numerical value 1e− 06 is called the step size (∆x) and should be an
input value (rather than built-in to the code as shown here) like the tolerance test
values, and be passed to the function as another argument.

Listing 22. R code demonstrating Newton’s Method calculations.

# Define Derivative Here
dfdx <- function(x)
{
# dfdx <- exp(x) + 10*sin(x);

dfdx <- (func(x + 1e-06) - func(x) )/ (1e-06);
# func must already exist before first call!

return(dfdx);
}

Starting with the last example lets modify the analytical version of the code by
inserting the above fragment in place of the analytical derivative. Listing 23 is the
listing with the modification in place. Notice we have only changed a single line, and
not have a more flexible tool. The next modification (left as an exercise) is to detach
the creation of the function from the main algorithm, then we would have a general
purpose Quasi-Newton’s method.

Listing 23. R code demonstrating Newton’s Method calculations using finite-difference approxima-
tion for the derivative.

# Newtons Method in R
# Define Function Here
func <- function(x)
{

func <- exp(x) -10*cos(x) -100;
return(func);

}
# Define Derivative Here
dfdx <- function(x)
{
# dfdx <- exp(x) + 10*sin(x);

dfdx <- (func(x + 1.0e-06) - func(x))/(1.0e-06)
return(dfdx);

}
# Newton ’s Method Here
# Read some values from the console
message(’Enter an initial guess for X for Newton method : ’)
xnow <- as.numeric(readline ())
message(’Enter iteration maximum : ’)
HowMany <- as.numeric(readline ())
message(’Enter a tolerance value for stopping (e.g. 1e-06) : ’)
HowSmall <- as.numeric(readline ())
# Now start the iterations
for (i in 1: HowMany) {

xnew <- xnow - func(xnow)/dfdx(xnow)
# test for stopping

if (abs(xnew -xnow) < HowSmall){
message(’Update not changing ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
if (abs(func(xnew) < HowSmall)) {

message(’Function value close to zero ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
# next iteration
xnow <- xnew
}
if (i >= HowMany){

message(’Iteration limit reached ’)
print(cbind(xnow ,xnew ,func(xnew)))

}

Listing 23 is the main code. Notice how the function definitions are changed, in
particular dfdx.
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Figure 58 is a screen capture of the program run after the code modification above.

Figure 58. Program run after changing from analytical to finite-difference approximation for the
derivative..

The advantage of the approximate derivative is that we don’t have to do the calculus
— just code in the function.

The obvious advantage of modular coding is to protect the parts of the code that
are static, and just modify the function definitions. We can keep a working example
around in case we break something and use that to find what we broke.

3.9.3 Method Fails

The three subsections below describe the ways that the method routinely fails, along
with some suggestions for remedy. Generally we should plot the function before trying

Page 76 of 187



ICT Hydraulic Networks SUMMER 2018

to find a root, but sometimes the root finding is a component of a more complex
program and we just want it to work. In that situation, the programmer would build
in many more tests that the three above to try to force a result before giving up.

3.9.4 Multiple Roots

Figure 59 illustrates the behavior in the presence of multiple roots. When there are
multiple roots the method will converge on the root that that is defined by the initial
guess.15 The initial estimate must be close enough to the desired root to converge
to the root.16 Another challenge is what happens if the initial guess is at the divide

Figure 59. Multiple roots..

(the peak of the function in Figure 59); in such cases we may actually get a divergent
solution because the slope of the function at that peak is nearly zero.

3.9.5 Cycling

Cycling can occur when the root is close to an inflection point of the function. Usual
practice is to again limit the step size to prevent such behavior. Figure 60 is an
illustration of cycling. A good remedy for cycling is to first detect the cycling, then
provide a small “shove” to the guess. Examination of root finding codes often reveals
a pseudo-random number generator within the code that will provide this shove when
cycling is detected.

15This behavior is called “sensitive dependence on initial conditions”.
16Ironically, we need a good idea of the answer before we start the method.
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Figure 60. Estimates cycling around a root..

3.9.6 Near-zero derivatives

The derivative in Equation 53 must not be zero, otherwise the guess corresponds to
a maximum or minimum of the function and the tangent line will never intersect the
x-axis. The derivative must not be too close to zero, otherwise the slope will be so
small as to make the correction too large to produce a meaningful update. Usual
practice is to limit the size of the correction term to some maximum and to use this
maximum value whenever the formula prescribes a larger step. Divergence to ±∞ is
usually explained by near-zero derivatives at the sign change. The bi-section method
is a little more robust in this respect.

3.10 Related Concepts

A couple of other root finding methods are worth mentioning because they can some-
times serve as a fallback when Newton’s method fails. Two robust methods are
bisection and false-positioning. These are discussed in the suggested reading list in
Chapra’s textbook.
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3.11 Exercise Set

1. Build a Newton’s Method program (or use mine) and make the program request
a tolerance value for “how close to zero” is the function, and “how small is the
change in update values.” Build your code using the modular approach (two
files). Test your code using the same example in the notes.

2. Now modify the main and the function module to use approximate derivatives
(the finite-difference formulation) and require the user supply a step size. Test
the code using the same example in the notes.

For each of the exercises above, prepare documentation similar to the notes
where you describe the salient points of your program.

3. Now use your program to find roots for the following equations:

(a) exp(x)− 3x2 = 0

(b) ln(x)− x+ 2 = 0

(c) tan(x)− x− 1 = 0

For these three equations, document your search for roots. Identify if there
are bad initial guesses that cause the program to fail to find a root. Also the
equations may have multiple roots. If you discover multiple roots, identify the
starting values one needs to use to converge to a particular root.

These exercises are also located on the class server in ES-3.
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4 Simultaneous Linear Systems of Equations

Many engineering simulations require the solution of simultaneous algebraic equa-
tions. These algebraic equation systems are either linear or non-linear in the unknown
variables. Many computation schemes have been developed to solve the resulting
systems, mostly depending on the structure of the systems (and the corresponding
coefficient matrices).

The solution of linear (or non-linear for that matter) can be accomplished using either
direct methods or iterative (successive approximation) methods. The method choice
depends on:

1. The amount of computation required (size of the problem) and computer mem-
ory available.17

2. The accuracy of the solution required.

3. The ability to control accuracy (i.e. find accurate enough solutions) to improve
overall computation speed and throughput.

Direct solution methods lead to results by means of finite and predictable opera-
tions count, but at the expense of error amplification and difficulty to deal with
near-singular systems. Iterative methods can converge to exact solutions, are robust
in near-singular cases, but at the expense of a non-predictable number of opera-
tions.

In this chapter we will see how to solve systems using built-in method(s) in R and
will also see the simplest of the iterative methods, Jacobi iteration. Jacobi iteration is
presented for several reasons: it is simple to program, it shows the beauty of iteration
when it works, and introduces a concept called pre-conditioning. For problems in
this workbook, the built in solve(...) is recomended; we will use Jacobi iteration
later on the the aquifer flow models, because the model equation structure is quite
amenable to this kind of solution method.

For really large systems of equations iterative methods probably dominate because
they are quite amenable to out-of-core solution — Jacobi iteration is ideal for parallel
processing in a GPU18

17In the past, the memory was indeed an issue – its less so today; a really big problem of thousands
of equations and thousands of variables might indeed be too big for any single computer array
and would require out-of-core solver techniques, which I suspect are a slowly dying art.

18Graphics Processing Unit — Nearly all our laptops have GPU; either an Intel, NVIDIA, or AMD.
These are intended for rendering graphics, but can be directly accessed with the proper software
tools and can perform floating point operations really quickly. For example on my laptop I have
an NVIDIA GeForce GT750M which I can program using a CUDA toolkit. If I had a really large
system to solve, I would try Jacobi iteration, make each equation a thread, the solution guess
a thread, and the update a thread. Its relatively easy to multiply, add, and divide threads, so
one could compute the update directly from parallel thread multiplication using the guess, then
thread addition to update the guess, and repeat. GPU programming is beyond this handbook, but
remember that one can trade efficiency for speed if the operations are simple vector arithmetic.
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4.1 Numerical Linear Algebra – Matrix Manipulation

This section introduces use of matrices in R to learn how to address particular ele-
ments of a matrix – once that is understood, the remaining arithmetic is reasonably
straightforward.

4.2 The Matrix — A data structure

Listing 24 is script fragment that reads in two different matrices A and B, and writes
them back to the screen. While such an action alone is sort of meaningless, the code
does illustrate how to read the two different files, and write back the result in a row
wise fashion.

The two matrices are

A =


12 7 3

4 5 6

7 8 9

 (21)

and

B =


5 8 1 2

6 7 3 0

4 5 9 1

 (22)

Now that we have a way (albeit pretty arcane) for getting matrices into our pro-
gram from a file19 we can explore some elementary matrix arithmetic operations, and
then will later move on to some more sophisticated operations, ultimately culminat-
ing in solutions to systems if linear equations (and non-linear systems in the next
chapter).

19The read from a file is a huge necessity — manually entering values will get old fast. I have
written matrix generators whose purpose in life is to construct matrices and put them into files
for subsequent processing — often these programs are pretty simple because of structure in a
problem, at other times they rival the solution tool in complexity; once for a Linear Programming
model (circa 1980’s) I developed a code to write a 1200 X 1200 matrix to a file, which would be
functionally impossible to enter by hand.
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Listing 24. R code demonstrating reading in two matrices.

# R script for some matrix operations
############## READ IN DATA FROM A FILE ####################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /5-

LinearSystems/RScripts"
filename <- "MatrixA.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Read the first file
yy <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
filename <- "MatrixB.txt" # change the filename
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Read the second file
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
############## Get Row and Column Counts ###################
HowManyColumnsA <- length(yy)
HowManyRowsA <- length(yy$V1)
HowManyColumnsB <- length(zz)
HowManyRowsB <- length(zz$V1)
############### Build A and B Matrices ####################
Amat <- matrix(0,nrow = HowManyRowsA , ncol = HowManyColumnsA)
Bmat <- matrix(0,nrow = HowManyRowsB , ncol = HowManyColumnsB)
for (i in 1: HowManyRowsA){

for(j in 1:( HowManyColumnsA)){
Amat[i,j] <- yy[i,j]

}
}
rm(yy) # deallocate zz and just work with matrix and vectors
for (i in 1: HowManyRowsB){

for(j in 1:( HowManyColumnsB)){
Bmat[i,j] <- zz[i,j]

}
}
rm(zz) # deallocate zz and just work with matrix and vectors
############# Echo Input ###################################
print(Amat)
print(Bmat)

4.3 Matrix Arithmetic

Analysis of many problems in engineering result in systems of simultaneous equations.
We typically represent systems of equations with a matrix. For example the two-
equation system,

2x1 + 3x2

4x1 − 3x2

= 8

= − 2
(23)

Could be represented by set of vectors and matrices20

A =

2 3

4 −3

 x =

x1

x2

 b =

 8

−2

 (24)

and the linear system then written as

A · x = b (25)

20Usually called “vector-matrix” form. Additionally, a vector is really just a matrix with column
rank = 1 (a single column matrix).
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So the “algebra” is considerably simplified, at least for writing things, however we now
have to be able to do things like multiplication (indicated by ·) as well as the concept
of addition and subtraction, and division (multiplication by an inverse). There are
also several kinds of matrix multiplication – the inner product as required by the
linear system, the vector (cross product), the exterior (wedge), and outer (tensor)
product are a few of importance in both mathematics and engineering.

The remainder of this section will examine the more common matrix operations.

4.3.1 Matrix Definition

A matrix is a rectangular array of numbers. 1 5 7 2
2 9 17 5
11 15 8 3

 (26)

The size of a matrix is referred to in terms of the number of rows and the number of
columns. The enclosing parenthesis are optional above, but become meaningful when
writing multiple matrices next to each other. The above matrix is 3 by 4.

When we are discussing matrices we will often refer to specific numbers in the matrix.
To refer to a specific element of a matrix we refer to the row number (i) and the column
number (j). We will often call a specific element of the matrix, the ai,j -th element
of the matrix. For example a2,3 element in the above matrix is 17. In R we would
refer to the element as a matrix[i][j] or whatever the name of the matrix is in the
program.

4.3.2 Multiply a matrix by a scalar

A scalar multiple of a matrix is simply each element of the matrix multiplied by the
scalar value. Consider the matrix A below.

A =

12 7 3
4 5 6
7 8 9

 (27)

If the scalar is say 2, then 2×A is computed by doubling each element of A, as

2A =

24 14 6
8 10 12
17 16 18

 (28)

In R we can simply perform the arithmetic as
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Listing 25. R code demonstrating scalar multiplication.

#######################
twoA <- 2 * Amat
print(twoA)

Figure 61 is an example using the earlier A matrix and multiplying it by the scalar
value of 2.0.

Figure 61. Multiply each element in amatrix by a scalar .
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4.3.3 Matrix addition (and subtraction)

Matrix addition and subtraction are also element-by-element operations. In order to
add or subtract two matrices they must be the same size and shape. This require-
ment means that they must have the same number of rows and columns. To add or
subtract a matrix we simply add or subtract the corresponding elements from each
matrix.

For example consider the two matrices A and 2A below

A =

12 7 3
4 5 6
7 8 9

 2A =

24 14 6
8 10 12
17 16 18

 (29)

For example the sum of these two matrices is the matrix named 3A, shown be-
low:

A + 2A =

12 + 24 7 + 14 3 + 6
4 + 8 5 + 10 6 + 12
7 + 14 8 + 16 9 + 18

 =

36 21 9
12 15 18
21 24 27

 (30)

Now to do the operation in R, we need to read in the matrices, perform the addition,
and write the result. In the code example in 62 I added a third matrix to store the
result – generally we don’t want to clobber existing matrices, so we will use the result
instead.

Subtraction is performed in a similar fashion, except the subtraction operator is
used.
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Figure 62. Add each element in A to each element in twoA, store the result in threeA..
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4.3.4 Multiply a matrix

One kind of matrix multiplication is an inner product. Usually when matrix multi-
plication is mentioned without further qualification ,the implied meaning is an inner
product of the matrix and a vector (or another matrix).

Matrix multiplication is more complex than addition and subtraction. If two matrices
such as a matrix A (size l x m) and a matrix B ( size m x n) are multiplied together,
the resulting matrix C has a size of l x n. The order of multiplication of matrices is
extremely important21.

To obtain C = A B, the number of columns in A must be the same as the number of
rows in B. In order to carry out the matrix operations for multiplication of matrices,
the i, j-th element of C is simply equal to the scalar (dot or inner) product of row i
of A and column j of B.

Consider the example below

A =

(
1 5 7
2 9 3

)
B =

 3 −2
−2 1
1 1

 (31)

First, we would evaluate if the operation is even possible, A has two rows and three
columns. B has three rows and two columns. By our implied multiplication “rules”
for the multiplication to be defined the first matrix must have the same number of
rows as the second matrix has columns (in this case it does), and the result matrix will
have the same number of rows as the first matrix, and the same number of columns
as the second matrix (in this case the result will be a 2X2 matrix).

C = AB =

(
c1,1 c1,2

c2,1 c2,2

)
(32)

And each element of C is the dot product of the row vector of A and the column
vector of B.

21Matrix multiplication is not transitive; A B 6= B A.
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c1,1 =
(
1 5 7

)
·

 3
−2
1

 =
(
(1)(3) + (5)(−2) + (7)(1)

)
= 0 (33)

c1,2 =
(
1 5 7

)
·

−2
1
1

 =
(
(1)(−2) + (5)(1) + (7)(1)

)
= 10 (34)

c2,1 =
(
2 9 3

)
·

 3
−2
1

 =
(
(2)(3) + (9)(−2) + (3)(1)

)
= −9 (35)

c2,2 =
(
2 9 3

)
·

−2
1
1

 =
(
(2)(−2) + (9)(1) + (3)(1)

)
= 8 (36)

Making the substitutions results in :

C = AB =

(
0 10
−9 8

)
(37)

So in an algorithmic sense we will have to deal with three matrices, the two source
matrices and the destination matrix. We will also have to manage element-by-element
multiplication and be able to correctly store through rows and columns. In R this
manipulation is handled for us by the matrix multiply operator % * %.

Figure 63 is a script that multiplies the two matrices above and prints the re-
sult.22

4.3.5 Identity matrix

In computational linear algebra we often need to make use of a special matrix called
the “Identity Matrix”. The Identity Matrix is a square matrix with all zeros except
the i, i0-th element (diagonal) which is equal to 1:

22Internal to R the actual code for the multiplication is three nested for-loops. The outer loop
counts based rows of the first matrix, the middle loop counts based on columns of the second
matrix, and the inner most loop counts based on columns of the first matrix ( or rows of the
second matrix). In many practical cases we may actually have to manipulate at the element level
— similar to how the zz object was put into a matrix explicitly above.

Page 88 of 187



ICT Hydraulic Networks SUMMER 2018

Figure 63. Matrix multiplication example.

I3×3 =

1 0 0
0 1 0
0 0 1

 (38)

Usually we don’t bother with the size subscript i used above and just stipulate that
the matrix is sized as appropriate. Multiplying any matrix by (a correctly sized)
identity matrix results in no change in the matrix. IA = A

Page 89 of 187



ICT Hydraulic Networks SUMMER 2018

In R the identity matrix is easily created using <matrix name> <- diag(dimension).

4.3.6 Matrix Inverse

In many practical computational and theoretical operations we employ the concept
of the inverse of a matrix. The inverse is somewhat analogous to“dividing” by the
matrix. Consider our linear system

A · x = b (39)

If we wished to solve for x we would “divide” both sides of the equation by A. Instead
of division (which is essentially left undefined for matrices) we instead multiply by
the inverse of the matrix23. The inverse of a matrix A is denoted by A−1 and by
definition is a matrix such that when A−1 and A are multiplied together, the identity
matrix I results. e.g. A−1A = I

Lets consider the matrixes below

A =

(
2 3
4 −3

)
(40)

A−1 =

1
6

1
6

2
9
−1

9

 (41)

We can check that the matrices are indeed inverses of each other using R and matrix
multiplication — it should return an identity matrix.

Figure 64 is our multiplication script modified where A = A and B = A−1 per-
form the multiplication and then report the result. The result is the identity matrix
regardless of the order of operation.24

Now that we have some background on what an inverse is, it would be nice to know
how to find them — that is a remarkably challenging problem. Here we examine a
classical algorithm for finding an inverse if we really need to — computationally we
only invert if necessary, there are other ways to “divide” that are faster.

4.3.7 Gauss-Jordan method of finding A−1

There are a number of methods that can be used to find the inverse of a matrix using
elementary row operations. An elementary row operation is any one of the three
operations listed below:

23The matrix inverse is the multiplicative inverse of the matrix – we are defining the equivalent of a
division operation, just calling it something else. This issue will be huge later on in our workbook,
especially when we are dealing with non-linear systems

24Why do you think this is so, when above we stated that multiplication is intransitive?
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Figure 64. Matrix multiplication used to check an inverse..

1. Multiply or divide an entire row by a constant.

2. Add or subtract a multiple of one row to/from another.

3. Exchange the position of any 2 rows.

The Gauss-Jordan method of inverting a matrix can be divided into 4 main steps.
In order to find the inverse we will be working with the original matrix, augmented
with the identity matrix – this new matrix is called the augmented matrix (because
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no-one has tried to think of a cooler name yet).

A|I =

(
2 3 | 1 0
4 −3 | 0 1

)
(42)

We will perform elementary row operations based on the left matrix to convert it to
an identity matrix – we perform the same operations on the right matrix and the
result when we are done is the inverse of the original matrix.

So here goes – in the theory here, we also get to do infinite-precision arithmetic, no
rounding/truncation errors.

1. Divide row one by the a1,1 value to force a 1 in the a1,1 position. This is
elementary row operation 1 in our list above.

A|I =

(
2/2 3/2 | 1/2 0
4 −3 | 0 1

)
=

(
1 3/2 | 1/2 0
4 −3 | 0 1

)
(43)

2. For all rows below the first row, replace rowj with rowj − aj,1 ∗ row1. This
happens to be elementary row operation 2 in our list above.

A|I =

(
1 3/2 | 1/2 0

4− 4(1) −3− 4(3/2) | 0− 4(1/2) 1− 4(0)

)
=

(
1 3/2 | 1/2 0
0 −9 | −2 1

)
(44)

3. Now multiply row2 by 1
a2,2

. This is again elementary row operation 1 in our list

above.

A|I =

(
1 3/2 | 1/2 0
0 −9/− 9 | −2/− 9 1/− 9

)
=

(
1 3/2 | 1/2 0
0 1 | 2/9 −1/9

)
(45)

4. For all rows above and below this current row, replace rowj with rowj − a2,2 ∗
row2. This happens to again be elementary row operation 2 in our list above.
What we are doing is systematically converting the left matrix into an identity
matrix by multiplication of constants and addition to eliminate off-diagonal
values and force 1 on the diagonal.

A|I = (46)(
1 3/2− (3/2)(1) | 1/2− (3/2)(2/9) 0− (3/2)(−1/9)
0 1 | 2/9 −1/9

)
= (47)(

1 0 | 1/6 1/6
0 1 | 2/9 −1/9

)
(48)
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5. As far as this example is concerned we are done and have found the inverse.
With more than a 2X2 system there will be many operations moving up and
down the matrix to eliminate the off-diagonal terms.

So the next logical step is to build an algorithm to perform these operations for
us.

In R inversion is simply performed using the solve(...) function where the only
argument passed to the function is the matrix.25

Figure 65 is a screen capture of using solve(...) to find the inverse of A. The result
is identical to the input matrix A−1 above. While we now have the ability to solve
linear systems by rearrangement into

x = A−1 · b (49)

this is generally not a good approach (we are solving n linear systems to obtain the
inverse, instead of only the one we seek!).

Instead to solve a linear system, we would supply the coefficient matrix A and the
right hand side b, and then supply these two matrices to the solve routine
(e.g. x <- solve(A,b)).

25If we have to write code ourselves, its not terribly hard, but is lengthy and consequently error-
prone. Sometimes we have no choice, but in this workbook, we will use the built-in tool as much as
possible. R does not use Gaussian reduction unless we tell it to do so, it implements a factorization
called LU (or Cholesky) decomposition, then computes the inverse by repeated solution of a linear
system with the right hand side being selected from one of the identify matrix columns (as was
done above).
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Figure 65. The matrix inversion script showing results of a run and various input and output..
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4.4 Jacobi Iteration – An iterative method to find solutions

Iterative methods are often more rapid and economical in storage requirements than
the direct methods in solve(...).26 The methods are useful (necessary) for non-
linear systems of equations — we will use this feature later when we find solutions to
networks of pipelines.

Lets consider a simple example:

8x1 + 1x2 − 1x3

1x1 − 7x2 + 2x3

2x1 + 1x2 + 9x3

= 8
= − 4
= 12

(50)

The solution is x1 = 1, x2 = 1, x3 = 1. We begin the iterative scheme by refactoring
each equation in terms of a single variable (there is a secret pivot step to try to make
the system diagonally dominant – the example above has already been pivoted, or
“pre-conditioned” for the solution method):

x1

x2

x3

= 1.000 −0.125x2 0.125x3

= 0.571 0.143x1 0.286x3

= 1.333 −0.222x1 −0.111x2

(51)

Then supply an initial guess of the solution (e.g. (0, 0, 0)) and put these values into
the right-hand side, the resulting left-hand side is an improved (hopefully) solution.
Repeat the process until the solution stops changing, or goes obviously haywire.

This sequence of operation for the example above produces the results listed in Table
4.

Table 4. Jacobi Iteration Solution Sequence.

Iteration: 1-st 2-nd 3-rd 4-th 5th 6-th 7-th 8-th
x1 0 1.000 1.095 0.995 0.993 1.002 1.001 1.000
x2 0 0.571 1.095 1.026 0.990 0.998 1.001 1.000
x3 0 1.333 1.048 0.969 1.000 1.004 1.001 1.000

As a practical matter, refactoring the equations can instead be accomplished by com-
puting the inverse of each diagonal coefficient – and matrix multiplication, scalar
division, and vector addition are all that is required to find a solution (if the method
will actually work).

In linear algebra terms the Jacobi iteration method (without refactoring) performs
the following steps:

26The R solve routine is pretty robust, if you tell it sparse=TRUE it has a lot of internal methods to
pre-condition the problem for fast solution. But for really big systems we may wish to program
our own solver — especially if these systems have some special and predictable structure.
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1. Read in A, b, and xguess.

2. Construct a vector from the diagonal elements of A. This vector, W, will have
one column, and same number of rows as A.

3. Perform matrix arithmetic to compute an error vector, residual = A·xguess−b.

4. Divide this error vector by the diagonal weights update = residual/W

5. Update the solution vector xnew = xguess − update

6. Test for stopping, if not indicated, move the new solution into the guess and
return to step 3.

7. If time to stop, then report result and stop.

Listing 26 implements in R the algorithm described above to find solutions by the
Jacobi iteration method. The script does not pre-condition the linear system (so we
have to do that ourselves).

Listing 26. R code demonstrating Jacobi Iteration.

# R script to implement Jacobi Iteration Method to
# find solution to simultaneous linear equations
# assumes matrix is pre -conditioned to diagional dominant
# assumes matrix is non -singular
############## READ IN DATA FROM A FILE ####################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /5-

LinearSystems/RScripts"
filename <- "LinearSystem000.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Here we open the connection to the file (within read.table)
# Then the read.table attempts to read the entire file into an object named zz
# Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
############## Row and Column Counts #######################
HowManyColumns <- length(zz)
HowManyRows <- length(zz$V1)
tolerance <- 1e-12 #stop when error vector is small
itermax <- 200 # maximum number of iterations
############### Build A, x, and B ##############################
Amat <- matrix(0,nrow = HowManyRows , ncol = (HowManyColumns -2) )
xguess <- numeric (0)
Bvec <- numeric (0)
Wvec <- numeric (0)
############################################################
for (i in 1: HowManyRows){

for(j in 1:( HowManyColumns -2)){
Amat[i,j] <- zz[i,j]

}
Bvec[i] <- zz[i,HowManyColumns -1]
xguess[i] <- zz[i,HowManyColumns]
Wvec[i] <- Amat[i,i]

}
rm(zz) # deallocate zz and just work with matrix and vectors
##################### Implement Jacobi Iteration #############
for(iter in 1: itermax){
Bguess <- Amat %*% xguess
residue <- Bguess - Bvec
xnew <- xguess - residue/Wvec
xguess <- xnew
testval <- t(residue) %*% residue
if (testval < tolerance) {

message ("sum squared error vector small : ",testval);
break

}
}
if( iter == itermax) message (" Method Fail")
message (" Number Iterations : ", iter)
message (" Coefficient Matrix : ")
print(cbind(Amat))
message (" Solution Vector : ")
print(cbind(xguess))
message (" Right -Hand Side Vector : ")
print(cbind(Bvec))
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Figure 66 is a screen capture of the script in Listing 26 applied to the example
problem.

Figure 66. Jacobi Iteration applied to Example Problem.
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5 Non-Linear Systems by Quasi-Newton Method

This chapter formally presents the Newton-Raphson method as a routine to solve
systems of non-linear equations. The method is used later in the document to solve
for flows and heads in a pipeline network.

Lets return to our previous example where the function f is a vector-valued function
of a vector argument.

f(x) =
f1 = x2 + y2 −4
f2 = ex + y −1

(52)

Lets also recall Newtons method for scalar valued function of a single variable.

xk+1 = xk −
f(xk)
df
dx
|xk

(53)

Extending to higher dimensions, the value x become the vector x and the function f()
becomes the vector function f(). What remains is an analog for the first derivative
in the denominator (and the concept of division of a matrix).

The analog to the first derivative is a matrix called the Jacobian which is comprised
of the first derivatives of the function f with respect to the arguments x. For example
for a 2-value function of 2 arguments (as our example above)

df

dx
|xk =>

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 (54)

Next recall that division is replaced by matrix multiplication with the multiplicative
inverse, so the analogy continues as

1
df
dx
|xk

=>

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

−1

(55)

Lets name the Jacobian J(x).

So the multi-variate Newton’s method can be written as

xk+1 = xk − J(x)−1|xk · f(x)|xk (56)
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In the linear systems chapter we did find a way to solve for an inverse, but its not
necessary – a series of rearrangement of the system above yields a nice scheme tthat
does not require inversion of a matrix.

First, move the xk to the left-hand side.

xk+1 − xk = −J(x)−1|xk · f(x)|xk (57)

Next multiply both sides by the Jacobian.

J(x)|xk · (xk+1 − xk) = −J(x)|xk · J(x)−1|xk · f(x)|xk (58)

Recall a matrix multiplied by its inverse returns the identity matrix (the matrix
equivalent of unity)

−J(x)|xk · (xk+1 − xk) = f(x)|xk (59)

So we now have an algorithm:

1. Start with an initial guess xk, compute f(x)|xk , and J(x)|xk .

2. Test for stopping. Is f(x)|xk close to zero? If yes, exit and report results,
otherwise continue.

3. Solve the linear system J(x)|xk · (xk+1 − xk) = f(x)|xk .

4. Test for stopping. Is (xk+1 − xk) close to zero? If yes, exit and report results,
otherwise continue.

5. Compute the update xk+1 = xk − (xk+1 − xk), then

6. Move the update into the guess vector xk <= xk+1 =and repeat step 1. Stop
after too many steps.

Now to repeat the example from the previous chapter, except we will employ this
algorithm.

The function (repeated)

f(x) =
f1 = x2 + y2 −4
f2 = ex + y −1

(60)

Then the Jacobian, here we will compute it analytically because we can

J(x) =>

2x 2y

ex 1

 (61)
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Listing 27 is a listing that implements the Newton-Raphson method with analytical
derivatives.

Listing 27. R code demonstrating Newton’s Method calculations.

# R script for system of non -linear equations using Newton -Raphson with analytical
derivatives

# forward define the functions
####### f(x) #########################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######## J(x) #########################
jacob <- function(x_vector){

jacob <- matrix(0,nrow=2,ncol =2)
jacob [1,1] <- 2* x_vector [1] ; jacob [1,2] <- 2* x_vector [2];
jacob [2,1] <- exp(x_vector [1]); jacob [2,2] <- 1 ;
return(jacob)

}
####### Solver Parameters #############
x_guess <- c(2. ,-0.8)
tolerancef <- 1e-9 # stop if function gets to zero
tolerancex <- 1e-9 # stop if solution not changing
maxiter <- 20 # stop if too many iterations
x_now <- x_guess
###### Newton -Raphson Algorithm ########
for (iter in 1: maxiter){

funcNow <- func(x_now)
testf <- t(funcNow) %*% funcNow
if(testf < tolerancef){

message ("f(x) is close to zero : ", testf);
break

}
dx <- solve(jacob(x_now),funcNow)
testx <- t(dx) %*% dx
if(testx < tolerancex){

message (" solution change small : ", testx);
break

}
x_now <- x_now - dx

}
#########################################
if( iter == maxiter) {message (" Maximum iterations -- check if solution is converging : ")}
message (" Initial Guess"); print(x_guess);
message (" Initial Function Value: "); print(func(x_guess));
message ("Exit Function Value : ");print(func(x_now));
message ("Exit Vector : "); print(x_now)

Figure 67 implements the script in Listing 27 for the example problem.

The next variant is to approximate the derivatives – usually a Finite-Difference ap-
proximation is used, either forward, backward, or centered differences – generally
determined based on the actual behavior of the functions themselves or by trial and
error. For really huge systems, we usually make the program itself make the adaptions
as it proceeds.

The coding for a finite-difference representation of a Jacobian is shown in Listing 28.
In constructing the Jacobian, we observe that each column of the Jacobian is simply
the directional derivative of the function with respect to the variable associated with
the column. For instance, the first column of the Jacobian in the example is first
derivative of the first function (all rows) with respect to the first variable, in this case
x. The second column is the first derivative of the second function with respect to the
second variable, y. This structure is useful to generalize the Jacobian construction
method because we can write (yet another) prototype function that can take the
directional derivatives for us, and just insert the returns as columns. The example
listing is specific to the 2X2 function in the example, but the extension to more
general cases is evident.
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Listing 28. R code demonstrating Newton’s Method calculations using finite-difference approxima-
tions to the partial derivatives.

# R script for system of non -linear equations using Newton -Raphson with
# finite -difference approximated derivatives
# forward define the functions
####### f(x) #########################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######## J(x) #########################
jacob <- function(x_vector ,func){ #supply a vector and the function name
# the columns of the jacobian are just directional derivatives

dv <- 1e-06 #perturbation value for finite difference
df1 <- numeric (0);
df2 <- numeric (0);
dxv <- x_vector;
dyv <- x_vector;

# perturb the vectors
dxv [1] <- dxv [1]+dv;
dyv [2] <- dyv [2]+dv;
df1 <- (func(dxv) - func(x_vector))/dv;
df2 <- (func(dyv) - func(x_vector))/dv;
jacob <- matrix(0,nrow=2,ncol =2)

# for a more general case should put this into a loop
jacob [1,1] <- df1[1] ; jacob [1,2] <- df2[1] ;
jacob [2,1] <- df1[2] ; jacob [2,2] <- df2[2] ;
return(jacob)

}
####### Solver Parameters #############
x_guess <- c(2. ,-0.8)
tolerancef <- 1e-9 # stop if function gets to zero
tolerancex <- 1e-9 # stop if solution not changing
maxiter <- 20 # stop if too many iterations
x_now <- x_guess
###### Newton -Raphson Algorithm ########
for (iter in 1: maxiter){

funcNow <- func(x_now)
testf <- t(funcNow) %*% funcNow
if(testf < tolerancef){

message ("f(x) is close to zero : ", testf);
break

}
dx <- solve(jacob(x_now ,func),funcNow)
testx <- t(dx) %*% dx
if(testx < tolerancex){

message (" solution change small : ", testx);
break

}
x_now <- x_now - dx

}
#########################################
if( iter == maxiter) {message (" Maximum iterations -- check if solution is converging : ")}
message (" Initial Guess"); print(x_guess);
message (" Initial Function Value: "); print(func(x_guess));
message ("Exit Function Value : ");print(func(x_now));
message ("Exit Vector : "); print(x_now)
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Figure 67. Newton-Raphson using Analytical Derivatives.

Figure 68. Newton-Raphson using Finite-Difference Approximated Derivatives.
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6 Pipelines and Networks

Pipe networks, like single path pipelines, are analyzed for head losses in order to size
pumps, determine demand management strategies, and ensure minimum pressures in
the system. Conceptually the same principles are used for steady flow systems: con-
servation of mass and energy; with momentum used to determine head losses.

6.1 Pipe Networks – Topology

Network topology refers to the layout and connections. Networks are built of nodes
(junctions) and arcs (links).

6.1.1 Continunity (at a node)

Water is considered incompressible in steady flow in pipelines and pipe networks, and
the conservation of mass reduces to the volumetric flow rate, Q,

Q = AV (62)

where A is the cross sectional of the pipe, and V is the mean section velocity. Typical
units for discharge is liters per second (lps), gallons per minute (gpm), cubic meters
per second (cms), cubic feet per second (cfs), and million gallons per day (mgd). The
continuity equation in two cross-sections of a pipe as depicted in Figure 69 is

A1V1 = A2V2 (63)

Junctions (nodes) are where two or more pipes join together. A three-pipe junction
node with constant external demand is shown in Figure 10. The continuity equation
for the junction node is

Q1 −Q2 −Q3 −D = 0 (64)

Figure 69. Continuity of mass (discharge) across a change in cross section.

In design analysis, all demands on the system are located at junctions (nodes), and
the flow connecting junctions is assumed to be uniform across the cross sections (so
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Figure 70. Continuity of mass (discharge) across a node (junction).

that mean velocities apply). If a substantial demand is located between nodes, then
an additional node is established at the demand location.

6.1.2 Energy Loss (along a link)

Equation 88 is the one-dimensional steady flow form of the energy equation typically
applied for pressurized conduit hydraulics.

p1

ρg
+ α1

V 2
1

2g
+ z1 + hp =

p2

ρg
+ α2

V 2
2

2g
+ z2 + ht + hl (65)

where p
ρg

is the pressure head at a location, αV
2

2g
is the velocity head at a location, z

is the elevation, hp is the added head from a pump, ht is the added head extracted
by a turbine, and hl is the head loss between sections 1 and 2. Figure 76 is a sketch
that illustrates the various components in Equation 88.

In network analysis this energy equation is applied to a link that joins two nodes.
Pumps and turbines would be treated as separate components (links) and their hy-
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Figure 71. Definition sketch for energy equation.

draulic behavior must be supplied using their respective pump/turbine curves.

6.1.3 Velocity Head

The velocity in αV
2

2g
is the mean section velocity and is the ratio of discharge to flow

area. The kinetic energy correction coefficient is

α =

∫
A
u3dA

V 3A
(66)

where u is the point velocity in the cross section (usually measured relative to the
centerline or the pipe wall; axial symmetry is assumed). Generally values of α are
2.0 if the flow is laminar, and approach unity (1.0) for turbulent flow. In most water
distribution systems the flow is usually turbulent so α is assumed to be unity and the
velocity head is simply V 2

2g
.

6.1.4 Added Head — Pumps

The head supplied by a pump is related to the mechanical power supplied to the flow.
Equation 89 is the relationship of mechanical power to added pump head.

ηP = Qρghp (67)

where the power supplied to the motor is P and the “wire-to-water” efficiency is
η.
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If the relationship is re-written in terms of added head27 the pump curve is

hp =
ηP

Qρg
(68)

This relationship illustrates that as discharge increases (for a fixed power) the added
head decreases. Power scales at about the cube of discharge, so pump curves for
computational application typically have a mathematical structure like

hp = Hshutoff −KpumpQ
exponent (69)

6.1.5 Extracted Head — Turbines

The head recovered by a turbine is also an “added head” but appears on the loss side
of the equation. Equation 96 is the power that can be recovered by a turbine (again
using the concept of “water-to-wire” efficiency is

P = ηQρght (70)

6.2 Pipe Head Loss Models

The Darcy-Weisbach, Chezy, Manning, and Hazen-Williams formulas are relation-
ships between physical pipe characteristics, flow parameters, and head loss. The
Darcy-Weisbach formula is the most consistent with the energy equation formulation
being derivable (in structural form) from elementary principles.

hLf
= f

L

D

V 2

2g
(71)

where hLf
is the head loss from pipe friction, f is a dimensionless friction factor, L is

the pipe length, D is the pipe characteristic diameter, V is the mean section velocity,
and g is the gravitational acceleration.

The friction factor, f , is a function of Reynolds number ReD and the roughness ratio
ks
D

.

f = σ(ReD,
ks
D

) (72)

The structure of σ is determined experimentally. Over the last century the structure
is generally accepted to be one of the following depending on flow conditions and pipe
properties

1. Laminar flow (Eqn 2.36, pg. 17 Chin (2006)) :

f =
64

ReD
(73)

27A negative head loss!
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2. Hydraulically Smooth Pipes(Eqn 2.34 pg. 16 Chin (2006)):

1√
f

= −2log10(
2.51

Red
√
f

) (74)

3. Hydraulically Rough Pipes(Eqn 2.34 pg. 16 Chin (2006)):

1√
f

= −2log10(
ke
D

3.7
) (75)

4. Transitional Pipes (Colebrook-White Formula)(Eqn 2.35 pg. 17 Chin (2006)):

1√
f

= −2log10(
ke
D

3.7
+

2.51

Red
√
f

) (76)

5. Transitional Pipes (Jain Formula)(Eqn 2.39 pg. 19 Chin (2006)):

f =
0.25

[log10(
ke
D

3.7
+ 5.74

Re0.9d
)]2

(77)

6.3 Pipe Networks Solution Methods

Several methods are used to produce solutions (estimates of discharge, head loss,
and pressure) in a network. An early one, that only involves analysis of loops is
the Hardy-Cross method. A later one, more efficient, is a Newton-Raphson method
that uses node equations to balance discharges and demands, and loop equations to
balance head losses. However, a rather ingenious method exists developed by Haman
and Brameller (1971), where the flow distribution and head values are determined
simultaneously. The task here is to outline the Haman and Brameller (1971) method
on the problem below – first some necessary definitions and analysis.

The fundamental procedure is:

1. Continuity is written at nodes (node equations).

2. Energy loss (gain) is written along links (pipe equations).

3. The entire set of equations is solved simultaneously.

6.4 Network Analysis

Figure 72 is a sketch of the problem that will be used. The network supply is the
fixed-grade node in the upper left hand corner of the drawing. The remaining nodes
(N1 – N4) have demands specified as the purple outflow arrows. The pipes are labeled
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Figure 72. Pipe network for illustrative example with supply and demands identified. Pipe dimen-
sions and diameters are also depicted..

(P1 – P6), and the red arrows indicate a positive flow direction, that is, if the flow is
in the indicated direction, the numerical value of flow (or velocity) in that link would
be a positive number.

Define the flows in each pipe and the total head at each node as Qi and Hi where the
subscript indicates the particular component identification. Expressed as a vector,
these unknowns are:

[Q1, Q2, Q3, Q4, Q5, Q6, H1, H2, H3, H4] = x

If we analyze continuity for each node we will have 4 equations (corresponding to
each node) for continunity, for instance for Node N2 the equation is

Q2 −Q3 Q6 = 4

Similarily if we define head loss in any pipe as ∆Hi = f 8Li

π2gD5
i
|Qi|Qi or ∆Hi = LiQi,

where Li = f 8Li

π2gD5
i
|Qi|, then we have 6 equations (corresponding to each pipe) for

energy, for instance for Pipe (P2) the equation is28

−L2Q2 H1 −H2 = 0

28The seemingly awkward way of writing the equations will become apparent shortly!
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If we now write all the node equations then all the pipe equations we could construct
the following coefficient matrix below:29

1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0

Declare the name of this matrix A(x), where x denotes the unknown vector of Q
augmented by H as above. Next consider the right-hand-side at the correct solution
(as of yet still unknown!) as

[0, 4, 3, 1, −100, 0, 0, 0, 0, 0] = b

So if the coefficient matrix is correct then the following system would result:

A(x) · x = b

which would look like



1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0





Q1

Q2

Q3

Q4

Q5

Q6

H1

H2

H3

H4


=



0
4
3
1
−100

0
0
0
0
0


(78)

Observe, the system is non-linear because the coefficient matrix depends on the cur-
rent values of Qi for the Li terms. However, the system is full-rank (rows == columns)
so it is a candidate for Newton-Raphson.

29The horizontal lines divide the node and the pipe equations. The upper partition are the node
equations in Q and H, the lower partition are the pipe equations in Q and H
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Further observe that the upper partition from column 6 and smaller is simply the
node-arc incidence matrix, and the lower partition for the same columns only contains
Li terms on its diagonal, the remainder is zero. Next observe that the partition
associated with heads in the node equations is the zero-matrix.

Lastly (and this is important!) the lower right partition is the transpose of the node-
arc incidence matrix subjected to scalar multiplication of −1. The importance is that
all the information needed to find a solution is contained in the node-arc incidence
matrix and the right-hand-side – the engineer does not need to identify closed loops
(nor does the computer need to find closed loops).

The trade-off is a much larger system of equations, however solving large systems is
far easier that searching a directed graph to identify closed loops, furthermore we
obtain the heads as part of the solution process.
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7 Pipelines Network Analysis

The prior chapter introduced the non-linear system that results from the analysis of
the pipeline network. This chapter continues the effort and produces a workable R
script that can compute flows and heads given just the node-arc incidence matrix,
and pipe properties.

Recall from the prior chapter the non-linear system to be solved is

A(x) · x = b

which would look like



1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0





Q1

Q2

Q3

Q4

Q5

Q6

H1

H2

H3

H4


=



0
4
3
1
−100

0
0
0
0
0


(79)

The system is non-linear because the coefficient matrix depends on the current values
of Qi for the Li terms. The upper partition from column 6 and smaller is simply
the node-arc incidence matrix, and the lower partition for the same columns only
contains Li terms on its diagonal, the remainder is zero. Next observe that the
partition associated with heads in the node equations is the zero-matrix. The lower
right partition is the transpose of the node-arc incidence matrix subjected to scalar
multiplication of −1. So using the Newton-Raphson approach discussed earlier we
develop a script in R that produces estimates of discharge and total head in the
system depicted in Figure 72.

7.1 Script Structure

The script will need to accomplish several tasks including reading the node-arc inci-
dence matrix supplied as the file in Figure 73 and convert the strings into numeric
values. The script will also need some support functions defined before constructing
the matrix.

The rows of the input file are:
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4

6

1.00 0.67 0.67 0.67 0.67 0.5

800 800 700 700 800 600

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.000011

1 1 1 1 1 1

1 -1 0 -1 0 0

0 1 -1 0 0 1

0 0 0 1 -1 -1

0 0 1 0 1 0

0 4 3 1 -100 0 0 0 0 0

Figure 73. Input file for the problem.

1. The node count.

2. The pipe count.

3. Pipe diameters, in feet.

4. Pipe lengths, in feet.

5. Pipe roughness heights, in feet.

6. Kinematic viscosity in feet2/second.

7. Initial guess of flow rates (unbalanced OK, non-zero vital!)

8. The next four rows are the node-arc incidence matrix.

9. The last row is the demand (and fixed-grade node total head) vector.

7.1.1 Support Functions

The Reynolds number will need to be calculated for each pipe at each iteration of
the solution, so a Reynolds number function will be useful. For circular pipes, the
following equation should work,

Re(Q) =
4

µπD
|Q| (80)

The Jain equation (Jain, 1976) that directly computes friction factor from Reynolds
number, diameter, and roughness is

f(ks, D,Re) =
0.25

[log( ks
3.7D

+ 5.74
Re0.9

)]2
(81)
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Once you have the Reynolds number for a pipe, and the friction factor, then the head
loss factor that will be used in the coefficient matrix (and the Jacobian) is

Li = f
8Li

π2gD5
i

|Qi| (82)

These three support functions are coded in R as shown in Listing 29.

Listing 29. R Code to compute Reynolds numbers and friction factors
.

#############################################################
############## Forward Define Support Functions #################
#############################################################
# Jain Friction Factor Function -- Tested OK 23SEP16
friction_factor <- function(roughness ,diameter ,reynolds){

temp1 <- roughness /(3.7* diameter);
temp2 <- 5.74/( reynolds ^(0.9));
temp3 <- log10(temp1+temp2);
temp3 <- temp3 ^2;
friction_factor <- 0.25/ temp3;
return(friction_factor)

}
# Velocity Function
velocity <- function(diameter ,discharge){

velocity <- discharge /(0.25* pi*diameter ^2)
return(velocity)

}
# Reynolds Number Function
reynolds_number <- function(velocity ,diameter ,mu){

reynolds_number <- abs(velocity)*diameter/mu
return(reynolds_number)

}
# Geometric factor function
k_factor <- function(howlong ,diameter ,gravity){

k_factor <- (16* howlong)/(2.0* gravity*pi^2* diameter ^5)
return(k_factor)

}

7.1.2 Augmented and Jacobian Matrices

The A(x) is built using the node-arc incidence matrix (which does not change),
and the current values of Li. You will also need to build the Jacobian of A(x) to
implement the update as-per Newton-Raphson.

A brief review; at the solution we can write

[A(x)] · x− b = f(x) = 0 (83)

Lets assume we are not at the solution, so we need a way to update the current value
of x. Recall from Newton’s method (for univariate cases) that the update formula
is

xk+1 = xk − (
df

dx
|xk)−1f(xk) (84)

The Jacobian will play the role of the derivative, and x is now a vector (instead of
a single variable). Division is not defined for matrices, but the multiplicative inverse
is (the inverse matrix), and plays the role of division. Hence, the extension to the
pipeline case is
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xk+1 = xk − [J(xk)]
−1f(xk) (85)

where J(xk) is the Jacobian of the coefficient matrix A evaluated at xk. Although a
bit cluttered, here is the formula for a single update step, with the matrix, demand
vector, and the solution vector in their proper places.

xk+1 = xk − [J(xk)]
−1{[A(xk)] · xk − b} (86)

As a practical matter we actually never invert the Jacobian30, instead we solve the
related Linear system of

[J(xk)] ·∆x = {[A(xk)] · xk − b} (87)

for ∆x, then perform the update as xk+1 = xk - ∆x

The Jacobian of the pipeline model is a matrix with the following properties:

1. The partition of the matrix that corresponds to the node formulas (upper left
partition) is identical to the original coefficient matrix — it will be comprised
of 0 or ± 1 in the same pattern at the equivalent partition of the A matrix.

2. The partition of the matrix that corresponds to the pipe head loss terms (lower
left partition), will consist of values that are twice the values of the coefficients
in the original coefficient matrix (at any supplied value of xk.

3. The partition of the matrix that corresponds to the head terms (lower right
partition), will consist of values that are identical to the original matrix.

4. The partition of the matrix that corresponds to the head coefficients in the node
equations (upper right partition) will also remain unchanged.

You will want to take advantage of problem structure to build the Jacobian (you could
just finite-difference the coefficient matrix to approximate the partial derivatives, but
that is terribly inefficient if you already know the structure).

7.1.3 Stopping Criteria, and Solution Report

You will need some way to stop the process – the three most obvious (borrowed from
Newton’s method) are:

1. Approaching the correct solution (e.g. [A(x)] · x− b = f(x) = 0).

30Inverting the matrix every step is computationally inefficient, and unnecessary. As an example,
solving the system in this case would at worst take 10 row operations each step, but nearly 100
row operations to invert at each step – to accomplish the same result, generate an update. Now
imagine when there are hundreds of nodes and pipes!
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2. Update vector is not changing (e.g. xk+1 = xk), so either have an answer, or
the algorithm is stuck.

3. You have done a lot of iterations (say 100).

Listing 30 is a code fragment to find the flow distribution and heads for the example
problem. Not listed is the forward defined functions already listed above – these
should be placed into the script in the location shown (or directly sourced into the
code in R).

Listing 30. R Code to Implement Pipe Network Solution
This fragment reads the data file and converts it into numeric values and reports back the values.

# Steady Flow in a Pipe Network Using Hybrid Method (and Newton -Raphson) based on
# Haman YM , Brameller A. Hybrid method for the solution of piping networks. Proc IEEE

1971;118(11) :1607?12.
#
# Clear all existing objects
rm(list=ls())

###############################################################
############## Forward Define Support Functions Go Here ##########
###############################################################
# Read Input Data Stream from File
zz <- file(" PipeNetwork.txt", "r") # Open a connection named zz to file named PipeNetwork.

txt
nodeCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
pipeCount <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
diameter <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distance <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
roughness <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
viscosity <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
flowguess <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
nodearcs <- (readLines(zz , n = nodeCount , ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
rhs_true <- (readLines(zz , n = pipeCount+nodeCount , ok = TRUE , warn = TRUE ,encoding = "

unknown", skipNul = FALSE))
close(zz) # Close connection zz
#
# Convert Input Stream into Numeric Structures
diameter <-as.numeric(unlist(strsplit(diameter ,split=" ")))
distance <-as.numeric(unlist(strsplit(distance ,split=" ")))
roughness <-as.numeric(unlist(strsplit(roughness ,split=" ")))
viscosity <-as.numeric(unlist(strsplit(viscosity ,split=" ")))
flowguess <-as.numeric(unlist(strsplit(flowguess ,split=" ")))
nodearcs <-as.numeric(unlist(strsplit(nodearcs ,split=" ")))
rhs_true <-as.numeric(unlist(strsplit(rhs_true ,split=" ")))
# convert nodearcs a matrix
# We will need to augment this matrix for the actual solution -- so after augmentation will

deallocate the memory
nodearcs <-matrix(nodearcs ,nrow=nodeCount ,ncol=pipeCount ,byrow = TRUE)
# echo input
message ("Node Count = ",nodeCount)
message ("Pipe Count = ",pipeCount)
message ("Pipe Lengths = "); distance
message ("Pipe Diameters = "); diameter
message ("Pipe Roughness = "); roughness
message ("Fluid Viscosity = ",viscosity)
message (" Initial Guess = "); flowguess
message ("Node -Arc -Incidence Matrix = "); nodearcs
#
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Listing 31 is a code fragment to construct the coefficient matrix structure for the
non-changing part and allocate variables for the Newton-Raphson method.

Listing 31. R Code to Implement Pipe Network Solution
This fragment constructs the initial A(x) matrix and allocates variables used in the iteration loop.

# create the augmented matrix
headCount <- nodeCount
flowCount <- pipeCount
augmentedRowCount <- nodeCount+pipeCount
augmentedColCount <- flowCount+headCount
augmentedMat <- matrix(0,nrow=augmentedRowCount ,ncol=augmentedColCount ,byrow = TRUE)
#
augmentedMat
# build upper left partition of matrix -- this partition is constants from node -arc matrix
for (i in 1: nodeCount){

for (j in 1: flowCount){
augmentedMat[i,j] <- nodearcs[i,j]

}
}
augmentedMat
# build lower right partition of matrix -- this partition is -1* transpose(node -arc) matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- flowCount +1
jend <- flowCount+headCount
for (i in istart:iend ){

for(j in jstart:jend ){
augmentedMat[i,j] <- -1*nodearcs[j-jstart+1,i-istart +1]

}
}
augmentedMat
# here it should be safe to delete the nodearc matrix
rm(nodearcs)
# Need some vorking vectors
HowMany <- 50
tolerance1 <- 1e-24
tolerance2 <- 1e-24
velocity_pipe <-numeric (0)
reynolds <- numeric (0)
friction <- numeric (0)
geometry <- numeric (0)
lossfactor <- numeric (0)
jacbMatrix <- matrix(0,nrow=augmentedRowCount ,ncol=augmentedColCount ,byrow = TRUE)
gq <- numeric (0)
solvecguess <- numeric(length=augmentedRowCount)
solvecnew <- numeric(length=augmentedRowCount)
solvecguess [1: flowCount] <- flowguess [1: flowCount]

# compute geometry factors (only need once , goes outside iteration loop)
for (i in 1: pipeCount)
{

geometry[i] <- k_factor(distance[i],diameter[i] ,32.2)
}
geometry

Listing 32 is the code fragment that implements the iteration loop of the Newton-
Raphson method. Within each iteration, the support functions are repeatedly used
to construct the changing part of the coefficient and Jacobian matrices, solving the
resulting linear system, performing the vector update, and testing for stopping.
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Listing 32. R Code to Implement Pipe Network Solution
This fragment executes the iteration loop where the Newton-Raphson method and updates are imple-
mented.

# going to wrap below into an interation loop -- forst a single instance
for (iteration in 1: HowMany){
################### BEGIN ITERATION OUTER LOOP ###########################
# compute current velocity
for (i in 1: pipeCount)
{

velocity_pipe[i]<-velocity(diameter[i],flowguess[i])
}
# compute current reynolds
for (i in 1: pipeCount)
{

reynolds[i]<-reynolds_number(velocity_pipe[i],diameter[i],viscosity)
}
# compute current friction factors
for (i in 1: pipeCount)
{

friction[i]<-friction_factor(roughness[i],diameter[i],reynolds[i])
}
# compute current loss factor
for (i in 1: pipeCount)
{

lossfactor[i] <- friction[i]* geometry[i]*abs(flowguess[i])
}
# build the function matrix
# operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend ){

for(j in jstart:jend ){
if ((i-istart +1) == j) augmentedMat[i,j] <- -1* lossfactor[j]

}
}
# now build the current jacobian
# slick trick -- we will copy the current function matrix , then modify the lower left

partition
jacbMatrix <- augmentedMat
# build the function matrix
# operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend ){

for(j in jstart:jend ){
if ((i-istart +1) == j) jacbMatrix[i,j] <- 2* jacbMatrix[i,j]

}
}

# now build the gq() vector
gq <- augmentedMat %*% solvecguess - rhs_true
gq
dq <- solve(jacbMatrix ,gq)
# update the solution vector
solvecnew <- solvecguess - dq
solvecnew
# # now test for stopping
test <- abs(solvecnew - solvecguess)
if( t(test) %*% test < tolerance1){

message (" Update not changing -- exit loop and report current update ")
message (" Iteration count = ",iteration)
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
break

}
test <- abs(gq)
if( t(test) %*% test < tolerance2 ){

message ("G(Q) close to zero -- exit loop and report current update ")
message (" Iteration count = ",iteration)
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
break

}
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
################### END OF ITERATION OUTER LOOP #############################
}
message (" Current Results ")
print(cbind(solvecguess ,gq,dq))
print(cbind(friction ,diameter ,distance ,velocity_pipe))
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Figure 74 is a screen capture of the script running the example problem. The first
column in the output is the solution vector. The first 6 rows are the flows in pipes
P1-P6. The remaining 4 rows are the heads at nodes N1-N4.

Figure 74. Screen capture of R script for pipe network analysis.

Page 118 of 187



ICT Hydraulic Networks SUMMER 2018

7.2 Exercise Set

1. Figure 75 is a six-pipe network with a water supply source at Node 0, and
demands at Nodes 1-5. Table 5 is a listing of the node and pipe data.

Figure 75. Layout of Simple Network.

Table 5. Node and Pipe Data.

Pipe ID Diameter
(mm)

Length (m) Rougnhess
(mm)

P0 900 100 0.1
P1 200 800 0.1
P2 200 700 0.1
P3 200 700 0.1
P4 200 800 0.1
P5 150 600 0.1

Node ID Demand
(LPS)

Elevation
(meters)

Head (meters)

N0 0.0 0.0 100
N1 2.0 0.0 ?
N2 4.0 0.0 ?
N3 3.0 0.0 ?
N4 1.0 0.0 ?

Code the script, build an input file, and determine the flow distribution In your
solution you are to supply

(a) An analysis showing the development of the node-arc incidence matrix
based on the flow directions in Figure 75,

(b) The input file you constructed to provide the simulation values to your
script, and

(c) A screen capture (or output file) showing the results.
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2. Repeat the analysis, but adjust the value of head at Node 0 so that the value
of head at Node 1 is 100 meters and the Node elevations are those in Table 6.
Modify the script to compute and report node pressures.

Table 6. Node Data.

Node ID Demand
(LPS)

Elevation
(meters)

Head (meters)

N0 0.0 30.0 ?
N1 2.0 28.0 100
N2 4.0 20.0 ?
N3 3.0 20.0 ?
N4 1.0 18.0 ?
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8 Pumps and Valves

The addition of pumps, turbines, and valves increases some of the complexity for a
network simulator. Valves and other fittings like elbows and such, that have a fixed
setting are modeled as links and the resulting equations look much like pipe loss
equations.

Pumps while also logically categorized as links are more complex because their head
loss behavior is firstly negative – that is they add head to a flow system, and their
ability to actually function is governed by their own performance curve. First we will
reviwe the modified Bernoulli equation again and then construct a prototype pump
function to add to the program and simulate pump performance.

8.1 Energy Loss (along a link)

Equation 88 is the one-dimensional steady flow form of the energy equation typically
applied for pressurized conduit hydraulics.

p1

ρg
+ α1

V 2
1

2g
+ z1 + hp =

p2

ρg
+ α2

V 2
2

2g
+ z2 + ht + hl (88)

where p
ρg

is the pressure head at a location, αV
2

2g
is the velocity head at a location, z

is the elevation, hp is the added head from a pump, ht is the added head extracted
by a turbine, and hl is the head loss between sections 1 and 2. Figure 76 is a sketch
that illustrates the various components in Equation 88.

In network analysis this energy equation is applied to a link that joins two nodes.
Pumps and turbines would be treated as separate components (links) and their hy-
draulic behavior must be supplied using their respective pump/turbine curves.

8.1.1 Added Head — Pumps

The head supplied by a pump is related to the mechanical power supplied to the flow.
Equation 89 is the relationship of mechanical power to added pump head.

ηP = Qρghp (89)

where the power supplied to the motor is P and the “wire-to-water” efficiency is
η.

If the relationship is re-written in terms of added head31 the pump curve is

hp =
ηP

Qρg
(90)

31A negative head loss!

Page 121 of 187



ICT Hydraulic Networks SUMMER 2018

Figure 76. Definition sketch for energy equation.

Figure 77 is a typical pump curve depicting the kind of information available from a
manufacturer of a pump.

Figure 77. Pump Curve.

In introductory fluid mechanics we spend effort to match the pump curve to the
system curve (head losses in our distribution system) and that match tells us how
the pump-system combination should function. The pump curve relationship, as well
as Equation 90, illustrates that as discharge increases (for a fixed power) the added
head decreases. Power scales at about the cube of discharge, so pump curves for
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computational application typically have a mathematical structure like

hp = Hshutoff −KpumpQ
exponent (91)

In computational hydraulics we will need to represent the added as a head loss term
(with opposite sign), and the functional form represented by Equation 91 is a good
starting point. Practical (professional) programs will allow the curve to be represented
in a tabular form and will use interpolation (just like our examples earlier) to specify
the added head at a particular flow rate.

The next example will illustrate how to add pumps into the model.

Example 1: Pipe network with pumps
Figure 78 is a sketch of the problem that will be used. The network supply is the
fixed-grade node in the upper left hand corner of the drawing – in this example its
head is set at zero. The remaining nodes (N1 – N4) have demands specified as the
purple outflow arrows. The pipes are labeled (P2 – P6), and the red arrows indicate a
positive flow direction, that is, if the flow is in the indicated direction, the numerical
value of flow (or velocity) in that link would be a positive number. The pump replaces

Figure 78. Pipe Network with a Pump.

pipe (P1) from the previous version of this example. We will use the observation that
we really only need to identify which links are pumps, substitute in the correct added
head component and then solve the system as in the earlier example.

We have to specify how the pump curve will be represented. In this example we will
use a functional form.

hp(Q) = Hshutoff −Kpump ×Qn (92)

For this example we will use the following numerical values for the pump function:
Hshutoff = 104.54 feet, Kpump = 0.25 feet/cfs2, and n = 2.
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The hp(Q) is actually written as an added head factor, just like the friction factor,
so we will use absolute values of flow so the term at each computational step can be
placed in the augmented maxrix as if it were a head loss term; the solver will not
know the difference.

The actual functional form employed is

hp(Q) = [Hshutoff/|Q| −Kpump × |Q|]Q (93)

As before the sign of Q at the solution conveys flow direction. The program example
does not trap the potential divide by zero error Hshutoff/|Q|, but one could test for
zero flow, and just apply the shutoff head. Listing 33 implements the prototype
function described above.

Listing 33. R Code to pump prototype function
.

.....
# Pump Curve factor function
p_factor <- function(shutoff ,constant ,exponent ,flow){

p_factor <- shutoff/abs(flow) - constant*abs(flow^(exponent -1))
return(p_factor)

}

Next we have to read in the pump characteristics, I decided to just have pumps
replace links (so I won’t have to rebuild a node-arc-incidence matrix), so the pump
characteristics are

1. Link ID – the index of the pipe that is replaced by a pump.

2. Shutoff head.

3. Kpump.

4. Exponent on the pump curve, n. Typically it will be larger than 1.0.

Listing 34 implements the reads from the input file, and builds the pump matrix.

Listing 34. R Code to include pumps in a pipeline network
.

# Read Input Data Stream from File
zz <- file(" PipeNetwork.txt", "r") # Open a connection named zz to file named PipeNetwork.

txt
pumpCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nodeCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
.....
rhs_true <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
pumps <- (readLines(zz, n = pumpCount , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
close(zz) # Close connection zz
.....
pumps <-as.numeric(unlist(strsplit(pumps ,split =" ")))
# convert nodearcs a matrix
# We will need to augment this matrix for the actual solution -- so after augmentation will

deallocate the memory
nodearcs <-matrix(nodearcs ,nrow=nodeCount ,ncol=pipeCount ,byrow = TRUE)
pumps <-matrix(pumps ,nrow=pumpCount ,ncol=4,byrow=TRUE)
.....
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Next we will have to compute the added head factor at each step, just like the friction
factor, and we will overwrite the pipe that the pump replaces.32

Listing 35 implements the computation of the added head factor, and the pump
selection factor.

Listing 35. R Code to include pumps in a pipeline network
.

.................
# compute the current pump factor
if(pumpCount > 0){
for (i in 1: pumpCount)

{
addedhead[i] <- p_factor(pumps[i,2],pumps[i,3], pumps[i,4], flowguess[pumps[i,1]])

}
}

# build the function matrix
# operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend ){

for(j in jstart:jend ){
if ((i-istart +1) == j) {augmentedMat[i,j] <- -1* lossfactor[j];
if(pumpCount > 0){

for(ipump in 1: pumpCount) {
if(j == pumps[ipump ,1]) augmentedMat[i,j] <- addedhead[ipump]

}
}

}
}

}
# print(augmentedMat)
..................

The remainder of the code is unchanged. Listing 36 illustrates the changes in the
input file. We have added a row to indicate how many pumps will be used as the
first record in the file. The last record after the right-hand side vector is the pump
characteristics; one row for each pump. The scripts also test if there are zero pumps
and skip code as needed. Observe we still preserve Link #1 data because its part of
the node-arc matrix, but the length and diameter of the link is irrelevant (but need
to be non-zero because we compute friction factors as if there were a pipe, but never
use them.

Listing 36. Input file with pumps at link#1 in a pipeline network
.

1 <== how many pumps
4
6
1.00 0.67 0.67 0.67 0.67 0.5 <== link #1 needs values as placeholders , but are not used
800 800 700 700 800 600
0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
0.000011
1 1 1 1 1 1
1 -1 0 -1 0 0
0 1 -1 0 0 1
0 0 0 1 -1 -1
0 0 1 0 1 0
0 4 3 1 0 0 0 0 0 0
1 100.54 0.25 2.0 <== Pump Link ID, H\_shutoff , K\_pump , Exponent

Figure 79 is a screen capture of the example problem run in R Studio. The script
produces the correct flow values, and the pump specified was intended to match the

32This approach is decidedly a hack for illustration purposes. A more advanced program would
probably just treat everything as a link and use a similar database build structure to determine if
a link is a head loss or head add link. My reasoning is that there will be fewer pumps than pipes
in any system, so overwriting a fictitious pipe is not too much trouble.
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Figure 79. Pipe Network with a Pump.

previous problem closely in that it produces enough head so that node N1 has nearly
the same head value as the problem without a pump.

8.1.2 Fitting (Minor) Losses

In addition to head loss in the conduit, other losses are created by inlets, outlets,
transitions, and other connections in the system. In fact such losses can be used to
measure discharge (think of the orifice plate in the fluids laboratory). The fittings
create additional turbulence that generates heat and produces the head loss.

Equation 94 is the typical loss model

hminor = K
V 2

2g
(94)

where K is called a minor loss coefficient, and is tabulated (e.g. Table 7) for various
kinds of fittings.

The use is straightforward, and multiple fittings are summed in the loss term in the
energy equation. In practical computation, these losses make the most sense when
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Table 7. Minor Loss Coefficients for Different Fittings.
Fitting Type K

Tee, Flanged, Line Flow 0.2
Tee, Threaded, Line Flow 0.9
Tee, Flanged, Branched Flow 1.0
Tee, Threaded , Branch Flow 2.0
Union, Threaded 0.08
Elbow, Flanged Regular 90o 0.3
Elbow, Threaded Regular 90o 1.5
Elbow, Threaded Regular 45o 0.4
Elbow, Flanged Long Radius 90o 0.2
Elbow, Threaded Long Radius 90o 0.7
Elbow, Flanged Long Radius 45o 0.2
Return Bend, Flanged 180o 0.2
Return Bend, Threaded 180o 1.5
Globe Valve, Fully Open 10
Angle Valve, Fully Open 2
Gate Valve, Fully Open 0.15
Gate Valve, 1/4 Closed 0.26
Gate Valve, 1/2 Closed 2.1
Gate Valve, 3/4 Closed 17
Swing Check Valve, Forward Flow 2
Ball Valve, Fully Open 0.05
Ball Valve, 1/3 Closed 5.5
Ball Valve, 2/3 Closed 200
Diaphragm Valve, Open 2.3
Diaphragm Valve, Half Open 4.3
Diaphragm Valve, 1/4 Open 21
Water meter 7

associated with a particular pipe. If we rewrite the loss equation

hminor =
K

2g

16Q2

π2D4
(95)

we see that these terms can be added to a pipe either as an additional loss term and
placed in the augmented matrix in the same way as the other loss term.

8.1.3 Extracted Head — Turbines

The head recovered by a turbine is also an “added head” but appears on the loss side
of the equation. Equation 96 is the power that can be recovered by a turbine (again
using the concept of “water-to-wire” efficiency is

P = ηQρght (96)

An approach similar to pumps would be employed — the effort in all these cases is to
represent the hydraulic components as a loss factor so the non-linear solver we have
already built can be used.
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9 EPANET by Example

9.1 About

EPANET is a computer program that performs hydraulics computations in pressure-
pipe systems. The internal computational engine is similar to that explored in the
previous chapter(s), but is far more efficient and well tested. The current version of
EPANET (Official EPA Release) is 2.00.12. There is an ongoing Open Source Project
that has released a version 2.1 (to follow the release numbering scheme). There is
likely to be a version 2.3 within a few years. All the versions so far include a capacity
to read an ASCII input file to direct the computations.

A GUI Interface is available that runs in Windows that is quite popular and useful,
but it is elderly and newer interfaces are being explored. Many users dispense with
the interface entirely and operate the model using custom-built (or general) wrapper
programs to call various DLLs (or Shared Objects). Wrappers exist in R, Python,
Delphi (the Legacy GUI), and probably PERL and Ruby.

The remainder of this chapter shows how to use EPANET by a series of representative
examples. These examples are at best a subset of the capabilities of the program, but
should be enough to get one started. The program requires some hydraulic insight to
interpret the results as well as detect data entry or conceptualization errors. 33

9.2 Using the Legacy Interface

9.2.1 Installing the Program

The urltoinstallvideo shows how to download and install EPANET onto your
computer. EPANET will run fine on a laptop computer even a Macintosh that has a
guest Windows OS (WM-Ware, Parallels, or BootCamp).

The urltoinstallvideo shows how to install an implementation that runs (so-so)
on a Macintosh (using a container built using Winebottler and WINE).

The urltoinstallvideo shows how to install and run an implementation on a Linux
computer (using WINE).

EPANET can also be installed onto a flash-drive and run directly from the drive
34.

33This chapter is from ”Cleveland, T.G., Tay, C.C., and Neale, C.N. 2015. EPANET by Example.
Department of Civil and Environmental Engineering, Texas Tech University.” available at
http://cleveland3.ddns.net/university-courses/ce-3372/3-Readings/

EPANETbyExample/
34A useful trick on a networked system — be sure you set up the flash drive to be writeable! I have

never tried this on a non-Windows implementation so cannot comment much on that.
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9.3 EPANET Modeling by Example

EPANET models are comprised of nodes, links,and reservoirs. Pumps are treated as
special links (that add head). Valves are also treated as special links depending on
the valve types. All models must have a reservoir (or storage tank).

9.3.1 Defaults

The program has certain defaults that should be set at the beginning of a simulation.
The main defaults of importance are the head loss equations (Darcy-Weisbach, Hazen-
Williams, or Chezy-Manning) and the units (CFS, LPS, etc.)

9.3.2 Example 1: Flow in a Single Pipe

A simple model to consider is a single pipe, a classic problem statement might be
something like

A 5-foot diameter, enamel coated, steel pipe carries 60oF water at a dis-
charge of 295 cubic-feet per second (cfs). Using the Moody chart, estimate
the head loss in a 10,000 foot length of this pipe.

In EPANET we will start the program, build a tank-pipe system and find the head
loss in a 10,000 foot length of the pipe. The program will compute the friction factor
for us (and we can check on the Moody chart if we wish).

Figure 80. Start EPANET program.

The main trick in EPANET is going to be the friction coefficient, in the EPANET
manual on page 30 and 31, the author indicates that the program expects a roughness
coefficient based on the head loss equation. The units of the roughness coefficient for
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a steel pipe are 0.15 × 10−3 feet. On page 71 of the user manual the author states
that roughness coefficients are in millifeet (millimeters) when the Darcy-Weisbach
head loss model is used. So keeping that in mind we proceed with the example.

Figure 116 is a screen capture of the EPANET program after installing the program.
The program starts as a blank slate and we will select a reservoir and a node from
the tool bar at the top and place these onto the design canvas.

Figure 116 is a screen capture of the EPANET program after setting defaults for the
simulation. Failure to set correct units for your problem are sometimes hard to detect
(if the model runs), so best to make it a habit to set defaults for all new projects.
Next we add the reservoir and the node. Figure 120 is a screen capture after the

Figure 81. Set program defaults. In this case units are cubic-feet-per-second and loss model is
Darcy-Weisbach..

reservoir and node is placed. We will specify a total head at the reservoir (value is
unimportant as long as it is big enough to overcome the head loss and not result in a
negative pressure at the node. We will specify the demand at the node equal to the
desired flow in the pipe. Next we will add the pipe.

Figure 122 is a screen capture after the pipe is placed. The sense of flow in this
example is from reservoir to node, but if we had it backwards we could either accept
a negative flow in the pipe, or right-click the pipe and reverse the start and end node
connections.
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Figure 82. Place the reservoir and the demand node..

Figure 83. Link the reservoir and demand node with a pipe..
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Now we can go back to each hydraulic element in the model and edit the properties.
We supply pipe properties (diameter, length, roughness height) as in Figure 124. We

Figure 84. Set the pipe length, diameter, and roughness height..

supply the reservoir total head as in Figure 126.

Figure 85. Set the reservoir total head, 100 feet should be enough in this example..
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We set the demand node elevation and the actual desired flow rate as in Figure
128. The program is now ready to run, next step would be to save the input file

Figure 86. Set the node elevation and demand. In this case the elevation is set to zero (the datum)
and the demand is set to 295 cfs as per the problem statement..

(File/Save/Name), then run the program by selecting the lighting bolt looking thing
and the computation engine will start.

Figure 87. Running the program.

If the nodal connectivity is OK and there are no computed negative pressures the
program will run. Figure 130 is the appearance of the program after the run is
complete (the annotations are mine!). A successful run means the program found an
answer to the problem you provided – whether it is the correct answer to your problem
requires the engineer to interpret results and decide if they make sense. The more
common conceptualization errors are incorrect units and head loss equation for the
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supplied roughness values, missed connections, and forgetting demand somewhere.
With practice these kind of errors are straightforward to detect. In the present
example we select the pipe and the solution values are reported at the bottom of a
dialog box.

Figure 88. Solution dialog box for the pipe..

Figure 133 is the result of turning on the computed head values at the node (and
reservoir) and the flow value for the pipe. The dialog box reports about 7.2 feet
of head loss per 1000 feet of pipe for a total of 72 feet of head loss in the system.
The total head at the demnad node is about 28 feet, so the head loss plus remaining
head at the node is equal to the 100 feet of head at the reservoir, the anticipated
result.

The computed friction factor is 0.010, which we could check against the Moody chart
if we wished to adjust the model to agree with some other known friction factor.
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9.3.3 Example 2: Flow Between Two Reservoirs

This example represents the situation where the total head is known at two points
on a pipeline, and one wishes to determine the flow rate (or specify a flow rate and
solve for a pipe diameter). Like the prior example it is contrived, but follows the
same general modeling process.

As in the prior example, we will use EPANET to solve a problem we have already
solved by hand.

Using the Moody chart, and the energy equation, estimate the diameter
of a cast-iron pipe needed to carry 60oF water at a discharge of 10 cubic-
feet per second (cfs) between two reservoirs 2 miles apart. The elevation
difference between the water surfaces in the two reservoirs is 20 feet.

As in the prior example, we will need to specify the pipe roughness terms, then solve
by trial-and-error for the diameter required to carry the water at the desired flowrate.
Page 31 of the EPANET manual suggests that the roughness height for cast iron is
0.85 millifeet.

As before the steps to model the situation are:

1. Start EPANET

2. Set defaults

3. Select the reservoir tool. Put two reservoirs on the map.

4. Select the node tool, put a node on the map. EPA NET needs one node!

5. Select the link (pipe) tool, connect the two reservoirs to the node. One link is
the 2 mile pipe, the other is a short large diameter pipe (negligible head loss).

6. Set the total head each reservoir.

7. Set the pipe length and roughness height in the 2 mile pipe.

8. Guess a diameter.

9. Save the input file.

10. Run the program. Query the pipe and find the computed flow. If the flow is too
large reduce the pipe diameter, if too small increase the pipe diameter. Stop
when within a few percent of the desired flow rate. Use commercially available
diameters in the trial-and-error process, so exact match is not anticipated.

Figure 135 is a screen capture after the model is built and some trial-and-error di-
ameter selection. Of importance is the node and the “short pipe” that connects the
second reservoir. By changing the diameter (inches) in the dialog box and re-running
the program we can find a solution (diameter) that produces 10 cfs in the system for
the given elevation differences.
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Figure 89. Solution dialog box for the pipe for Example 2.

We would conclude from this use of EPANET that a 22.75 inch ID cast iron pipe would
convey 10 cfs between the two reservoirs. Compare this solution to the “by-hand”
soluton to see if they are close.
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9.3.4 Example 3: Three-Reservoir-Problem

This example repeats another prior problem, but introduces the concept of a basemap
(image) to help draw the network. First the problem statement

Reservoirs A, B, and C are connected as shown35 in Figure 137. The water
elevations in reservoirs A, B, and C are 100 m, 80 m, and 60 m. The three
pipes connecting the reservoirs meet at junction J, with pipe AJ being 900
m long, BJ being 800 m long, and CJ being 700 m long. The diameters of
all the pipes are 850 mm. If all the pipes are ductile iron, and the water
temperature is 293oK, find the direction and magnitude of flow in each
pipe.

Figure 90. Three-Reservoir System Schematic.

Here we will first convert the image into a bitmap (.bmp) file so EPANET can import
the background image and we can use it to help draw the network. The remainder of
the problem is reasonably simple and is an extension of the previous problem.

The steps to model the situation are:

1. Convert the image into a bitmap, place the bitmap into a directory where the
model input file will be stored.

2. Start EPANET

3. Set defaults

4. Import the background.

35This problem is identical to Chin Problem 2.30, Pg. 92
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5. Select the reservoir tool. Put three reservoirs on the map.

6. Select the node tool, put the node on the map.

7. Select the link (pipe) tool, connect the three reservoirs to the node.

8. Set the total head each reservoir.

9. Set the pipe length, roughness height, and diameter in each pipe.

10. Save the input file.

11. Run the program.

Figure 138 is the result of the above steps. In this case the default units were changed
to LPS (liters per second). The roughness height is about 0.26 millimeters (if con-
verted from the 0.85 millifeet unit).

Figure 91. Solution for Example 3. The pipes were originally straight segments, but a drawing tool
in EPANET is used to follow the shape of the underlying basemap. The training video shows the pipes
as the straight lines. The flowrates are in liters-per-second, divide by 1000 to obtain cubic-meters-per-
second..
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9.3.5 Example 4: A Simple Network

Expanding the examples, we will next consider a looped network. As before we will
use a prior exercise as the motivating example.

The water-supply network shown in Figure 140 has constant-head elevated
storage tanks at A and C, with inflow and outflow at B and D. The
network is on flat terrain with node elevations all equal to 50 meters36.
If all pipes are ductile iron, compute the inflows/outflows to the storage
tanks. Assume that flow in all pipes are fully turbulent.

Figure 92. Two-Tank Distribution System Schematic.

As before we will follow the modeling protocol but add demand at the nodes.

The steps to model the situation are:

1. Convert the image into a bitmap, place the bitmap into a directory where the
model input file will be stored.

2. Start EPANET

3. Set defaults

36This problem is similar to Chin Problem 2.31, Pg. 92
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4. Import the background.

5. Select the reservoir tool. Put two reservoirs on the map.

6. Select the node tool, put 4 nodes on the map.

7. Select the link (pipe) tool, connect the reservoirs to their nearest nodes. Connect
the nodes to each other.

8. Set the total head each reservoir.

9. Set the pipe length, roughness height, and diameter in each pipe. The pipes
that connect to the reservoirs should be set as short and large diameter, we
want negligible head loss in these pipes so that the reservoir head represents
the node heads at these locations.

10. Save the input file.

11. Run the program.

In this case the key issues are the units (liters per second) and roughness height (0.26
millimeters). Figure 141 is a screen capture of a completed model.

Figure 93. Solution for Example 3. The pipes were originally straight segments, but a drawing tool
in EPANET is used to follow the shape of the underlying basemap. The training video shows the pipes
as the straight lines. The flowrates are in liters-per-second, divide by 1000 to obtain cubic-meters-per-
second..
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9.4 EPANET Modeling by Example: Example 5

The next example illustrates how to model a pump in EPANET. A pump is a special
“link” in EPANET. This link causes a negative head loss (adds head) according to a
pump curve. In additon to a pump curve there are three other ways to model added
head — these are discussed in th eunser manual and are left for the reader to explore
on their own.

9.4.1 Example 5: Pumping Water Uphill

Figure 143 is a conceptual model of a pump lifting water through a 100 mm diameter,
100 meter long, ductile iron pipe from a lower to an upper reservoir. The suction side
of the pump is a 100 mm diameter, 4-meter long ductile iron pipe. The difference in
reservoir free-surface elevations is 10 meters. The pump performance curve is given
as

hp = 15− 0.1Q2 (97)

where the added head is in meters and the flow rate is in liters per second (Lps). The
analysis goal is to estimate the flow rate in the system.

Figure 94. Example 5 conceptual model. The pipes are 100 mm ductile iron..

To model this situation, the engineer follows the modeling protocol already outlined,
only adding the special link.

1. Convert the image into a bitmap, place the bitmap into a directory where the
model input file will be stored.
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2. Start EPANET

3. Set defaults (hydraulics = D-W, units = LPS)

4. Import the background.

5. Select the reservoir tool. Put two reservoirs on the map.

6. Select the node tool, put 2 nodes on the map, these represent the suction and
discharge side of the pump.

7. Select the link (pipe) tool, connect the reservoirs to their nearest nodes.

8. Select the pump tool.

9. Connect the nodes to each other using the pump link.

10. Set the total head each reservoir.

11. Set the pipe length, roughness height, and diameter in each pipe.

12. On the Data menu, select Curves. Here is where we create the pump curve.
This problem gives the curve as an equation, we will need three points to define
the curve. Shutoff (Q = 0), and simple to compute points make the most sense.

13. Save the input file.

14. Run the program.

Figure 95. Example 5 select the background drawing (BMP file).
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Figure 144 is a screen capture of loading the background image. After the image
is loaded, we can then build the hydraulic model. The next step is to place the
reservoirs.
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Figure 96. Example 5 place the lower and upper reservoir.

Figure 145 is a screen capture of the reservoirs after they have been placed. The
upper reservoir will be assigned a total head 10 meters larger than the lower reservoir
— a reasonable conceptual model is to use the lower reservoir as the datum.
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Figure 97. Example 5 place the nodes, pipes, and the pump link..

Figure 146 is a screen capture of model just after the pump is added. The next steps
are to set the pipe lengths (not shown) and the reservoir elevations (not shown).
Finally, the engineer must specify the pump curve.
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Figure 98. Example 5 pump curve entry dialog box. Three points are entered and the curve equation
is created by the program..

Figure 147 is a screen capture of the pump curve data entry dialog box. Three points
on the curve were selected and entered into the tabular entry area on the left of the
dialog box, then the curve is created by the program. The equation created by the
program is the same as that of the problem – hence we have the anticipated pump
curve.
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Next the engineer associates the pump curve with the pump as shown in Figure 148.

Figure 99. Setting the pump curve..

Upon completion of this step, the program is run to estimate the flow rate in the
system.
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9.5 EPANET Modeling by Example: Example 6

Example 6 is an extended period simulation – the files will simply be provided; the
concept is well described in most hydraulics textbooks, as well as in the EPANET
Documentation, however in the interest of time, it is left to the reader to download
and run an extended period simulation model. The goal (for the seminar) is to have
a working model of some complexity to explore the other tools discussed later.
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9.6 The Respec Interface

The urltoinstallvideo shows how to download and install EPANET onto your
computer using the newer Respec GUI. This interface was built to be GIS aware
and facilitate integration of an asset management database and the simulation soft-
ware.

9.6.1 Installing the NewUI

The pre-release of the NewUI is located on a GitHub repository at https://github.
com/USEPA/SWMM-EPANET_User_Interface/releases.

Figure 100 is a screen capture of the page.

Figure 100. Git Hub Repository Page for the NewUI..

The file named EPANET-UI-MTP4r1.exe is a PC installer file that can be downloaded
and installed. Select the file and begin the download.

On the computer that is used for the screen captures in this document the following
were installed in advance of the NewUI.

1. Python 3 (I used the Anaconda installer and installed the 64-bit Python).

2. QGIS. I used both the stand-alone QGIS-OSGeo4W-2.18.8-1-Setup-x86 64.exe

and the over-the-wire osgeo4w-setup-x86 64.exe installer.

Python probably needs to be present, because the NewUI uses python scripts to access
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certain QGIS .DLL files for the interface. QGIS is handy because an environment
variable needs to be set to point to a directory that contains a collection of .CSV files
– these are located in the QGIS program.

The next series of screen captures document the installation from just after the down-
load, to setting the environment variable.

Figure 101 is the install screen on Windows 10 where the OS is requesting permission
to write to the disk. The user would choose yes.

Figure 101. Windows 10 Installer Security Panel – Choose Yes.
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Figure 102 is the first of several installer dialog boxes. The user would select next to
begin the installation.

Figure 102. Installer Dialog Box.

Figure 103 is the next of several more installer dialog boxes. The user would select
next to accept the install defaults and continue through a series of such screens.

Figure 103. Installer Dialog Box – Accept the Defaults.
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Figure 104. Installer Dialog Box – Ready for the Install.

Figure 104 is the installer ready to begin the install. In the figure, we have selected
a default installation and the creation of a desktop alias. The user would select
install and the installation would begin. The program installs pretty fast, less than a
minute.

Figure 105. Installed – Ready to Start.

Figure 105 is the completion screen, ready to start the program.
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Figure 106. Initial run – interface loads, but notice the error message in the script. I was able to use
the interface, but dealing with the error now is best. We will have to set an environment variable..

Figure 106 is the initial run of the NewUI. While it seems OK, notice the error
message regarding GDAL DAT directories. In my case, because GIS is a novelty to me,
I don’t have an existing environment for the GDAL libraries. The next several figures
go through how to set the variable on my machine, the steps would be similar on
user machines, with the variable pointing to the correct location. There might be
some issue if the user cannot set variables in a network environment and they would
need the system administrator to set the variable. The variable can also be set in a
script.

In Windows 10, the user would right-click in the lower left hand corner of their
desktop, on top of the window pane. A menu column should appear, and the user
will select SYSTEM. Figure 107 is a screen capture showing these steps.

Upon entry into the system setting dialog box there is a link called ADVANCED SYS-
TEM SETTINGS in the left column. On my machine, it is the bottom item. Select
ADVANCED SYSTEM SETTINGS The selection opens another dialog box called
SYSTEM PROPERTIES. The bottom selection button is labeled ENVIRONMENT
VARIABLES. Select this button to get to the next dialog box which will allow us to
set the requisite variable.
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Figure 107. Access the environment variable dialog. Right-click in the lower left hand corner. Then
select system..

Figure 108 is a screen capture of these steps.

Figure 108. In System, select “Advanced System Settings.” Then in the settings dialog, select “En-
vironment Variables.”.
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Once the user has the ENVIRONMENT VARIABLE dialog box open, then we can
set the variable. In the lower panel are the SYSTEM VARIABLES, and the user will
select NEW SYSTEM VARIABLE. The new variable dialog box opens and we type
the variable name, in this case GDAL DAT. Next we need to set its value. The value is
a path to the directory where the particular data structures reside. On my machine
the variable is set to C:/OSGeo4W64/share/epsg csv.

Other users will probably have different paths. Figure 109 is a screen capture illus-
trating these steps.

Figure 109. In Environment Variables, select “NEW SYSTEM VARIABLE.” As an aside, I tried
to set the variable as a user environment variable (the upper part of the dialog) and did not shake
the error. So the program is expecting a system variable that points to the directory epsg csv. The
directory is part of the Geospatial Data Abstraction Library and may be located in different palces on
other machines. In particular, if a user already has ArcGIS, then conceivably the interface could access
that directory..

After the selection the dialog box reports the variable and its value (before we select
OK and get out of the system menu). Figure 110 illustrates the result. From this
condition, the user should select OK and exit in reverse the various system dialog
boxes until they are back to their desktop with the NewUI still running.

The next step is to exit the NewUI and restart the program. Upon the restart the
error should be addressed and we are ready to build models.37

37The program runs OK with the error in place, but seemed to work better when the error was
addressed.
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Figure 110. After selecting the directory, the environment variable points to the directory. Now
ready to close the settings dialogs and return to the interface..

Figure 111. Returned to the NewUI and closed the program. Then restart, and the error is ad-
dressed..
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9.7 Verify the Install

The easiest way to verify the install is to open one of the examples supplied with
EPANET. They are located in some variant of C:/ProgramFiles/EPANET-UI/Examples.

Figure 112 illustrates selecting a file from the examples directory. On my machine I
have already palced a few extra examples, the default install will only have three (3)
examples.

Figure 112. Open an example file supplied with the program..

Upon opening the interface displays the image shown below in Figure 113. The
example has a dozen pipes, a storage tank, supply reservoir, and a pump. The next
step to verify the installation is to try to run EPANET from the NewUI.

Like the OldUI we can either choose to click on the “lightning bolt” icon, or choose
RUN SIMULATION. The selection of RUN SIMULATION from the PROJECT menu
tab is illustrated in Figure 114.
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Figure 113. Example 1 file supplied with the program..

Figure 114. Example 1 RUN SIMULATION..

Upon completion of the simulation, we can use the interface to interrogate the resul-
tant database, for example, Figure 115 is a plot of discharge in the pipe connecting
the pump to the network. It was constructed by activating SELECT OBJECT in the
EDIT menu. The selecting the pipe object (double click to be sure the object ID is
correct – the example does not have pipe labels activated). Then selecting the time
series icon in the interface. The user then selects the plot type (TIME SERIES), the
object type (LINK), the object ID (Link 10), the plot parameter (FLOW), and finally
OK.
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Figure 115. Example 1 Plot of Flow in Pipe ID=10..

The next part of this document illustrates building simple models in the interface
without regards to geo-referencing. These examples are based on the examples pre-
sented in
http://www.rtfmps.com/university-courses/ce-3372/3-Readings/EPANETbyExample/

and are illustrative of elementary examples used in teaching the use of EPANET as
a hydraulic tool to college students.

Additional pipe network specific training materials can be found in Lectures 9 through
13 located at http://www.rtfmps.com/university-courses/ce-3372/1-Lectures/
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9.8 EPA-NET Modeling by Example

EPA-NET models are comprised of nodes, links,and reservoirs. Pumps are treated as
special links (that add head). Valves are also treated as special links depending on
the valve types. All models must have a reservoir (or storage tank).

9.8.1 Defaults

The program has certain defaults that should be set at the beginning of a simulation.
The main defaults of importance are the head loss equations (Darcy-Weisbach, Hazen-
Williams, or Chezy-Manning) and the units (CFS, LPS, etc.)

9.8.2 Example 1: Flow in a Single Pipe using OldUI and NewUI

The simplest model to consider is from an earlier exercise in this workbook.

A 5-foot diameter, enamel coated, steel pipe carries 60oF water at a dis-
charge of 295 cubic-feet per second (cfs). Using the Moody chart, estimate
the head loss in a 10,000 foot length of this pipe.

In EPA-NET we will start the program, build a tank-pipe system and find the head
loss in a 10,000 foot length of the pipe. The program will compute the friction factor
for us (and we can check on the Moody chart if we wish).

The main trick in EPA-NET is going to be the friction coefficient, in the EPA-NET
manual on page 30 and 31, the author indicates that the program expects a roughness
coefficient based on the head loss equation. The units of the roughness coefficient for
a steel pipe are 0.15 × 10−3 feet. On page 71 of the user manual the author states
that roughness coefficients are in millifeet (millimeters) when the Darcy-Weisbach
head loss model is used. So keeping that in mind we proceed with the example.

Figure 116 is a screen capture of the EPA-NET program after installing the program
using the OldUI. The program starts as a blank slate and we will select a reservoir
and a node from the tool bar at the top and place these onto the design canvas.

Figure 116 is a screen capture of the EPA-NET program after installing the program
using the NewUI.
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Figure 116. Start EPA-NET program, OldUI.

Figure 117. Start EPA-NET program, NewUI.
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Figure 118 is a screen capture of the EPA-NET program after setting defaults for the
simulation. Failure to set correct units for your problem are sometimes hard to detect
(if the model runs), so best to make it a habit to set defaults for all new projects.

Figure 118. Set program defaults, OldUI. In this case units are cubic-feet-per-second and loss model
is Darcy-Weisbach..

Figure 119 is a screen capture of the EPA-NET program after setting defaults for the
simulation using the NewUI.

Figure 119. Set program defaults, NewUI. In this case units are cubic-feet-per-second and loss
model is Darcy-Weisbach..
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Next we add the reservoir and the node. Figure 120 is a screen capture after the
reservoir and node is placed.

Figure 120. Place the reservoir and the demand node..

Figure 121 is a screen capture after the reservoir and node is placed using the NewUI.
There is a caveat here – without a coordinate system the program assigns each object
the same coordinates, so the user has to manually insert the X and Y coordinates
into the objects. I suspect if a coordinate reference system is pre-assigned by virtue
of a GIS vector or raster layer, then the system would correctly report (and input)
coordinates.

Figure 121. Place the reservoir and the demand node, NewUI..

We will specify a total head at the reservoir (value is unimportant as long as it is
big enough to overcome the head loss and not result in a negative pressure at the
node. We will specify the demand at the node equal to the desired flow in the pipe.
Figure 122 is a screen capture after the pipe is placed. The sense of flow in this
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example is from reservoir to node, but if we had it backwards we could either accept
a negative flow in the pipe, or right-click the pipe and reverse the start and end node
connections.

Figure 122. Link the reservoir and demand node with a pipe..

Figure 123 is a screen capture after the pipe is placed using the NewUI. The main
challenge here is to actually draw and connect the pipe.

Figure 123. Link the reservoir and demand node with a pipe, NewUI..

The pipe icon is similar to the OldUI, and using the select arrow we select the pipe
icon. A drawing cross-hair appears, and we lay that on top of the reservoir and click.
Then as we drag the crosshair to the junction, a red dashed line follows the crosshair.
When we get to the junction we position the crosshair over the junction and right click
– that action connects the two objects with the link object (at least visually).
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Now we can go back to each hydraulic element in the model and edit the properties.
We supply pipe properties (diameter, length, roughness height) as in Figure 124. Fig-

Figure 124. Set the pipe length, diameter, and roughness height..

ure 125 shows setting the properties using the NewUI. We choose SELECT OBJECT
from the EDIT menu, then select the pipe. It [pipe] should change color to indicate
that it is selected – on my computer it changes to yellow. When it is selected, we can
double-click to obtain the properties, or choose the properties from the tool menu on
the left side of the design canvass. The properties are then supplied as in the OldUI.
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Figure 125. Set the pipe length, diameter, and roughness height. NewUI.

Using a similar selection process we supply the reservoir total head as in Figure 126
and Figure 127

Figure 126. Set the reservoir total head, 100 feet should be enough in this example..
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Figure 127. Set the reservoir total head, 100 feet should be enough in this example..

We then set the demand node elevation and the actual desired flow rate as in Figure
128. Figure 129 illustrates the same process in the NewUI.

Figure 128. Set the node elevation and demand. In this case the elevation is set to zero (the da-
tum) and the demand is set to 295 cfs as per the problem statement..

Again the procedure is select the object, then set the values.

The program is now ready to run, next step would be to save the input file (File/Save/-
Name), then run the program.

Run the program by selecting the lighting bolt looking thing (kind of channeling Zeus
here) and the program will start. If the nodal connectivity is OK and there are no
computed negative pressures the program will run. Figure 130 is the appearance of
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Figure 129. Set the node elevation and demand. In this case the elevation is set to zero (the da-
tum) and the demand is set to 295 cfs as per the problem statement..

Figure 130. Running the program.

the program after the run is complete (the annotations are mine!). A successful run
means the program found an answer to the problem you provided – whether it is the
correct answer to your problem requires the engineer to interpret results and decide
if they make sense. The more common conceptualization errors are incorrect units
and head loss equation for the supplied roughness values, missed connections, and
forgetting demand somewhere. With practice these kind of errors are straightforward
to detect. In the present example we select the pipe and the solution values are
reported at the bottom of a dialog box.

Figure 131 is the result using the NewUI. This is where the two systems diverge. This
particular error can be addressed by setting the simulation time to be at least one
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Figure 131. Running the program, NewUI. Error message is associated with incorrect TIMES entry.
Using the NewUI, the program expects a non-zero simulation duration. A simple hack is to specify the
duration equal to one hydraulic time step..

time increment (it is still a steady flow, single time period simulation). Once we make
this change the program will run successfully.

Figure 132 is the result using the NewUI. To produce this figure the menu item TIMES
was selected and the total duration (first record in the dialog box) was changed from
the default 0 to a value of 1:00. The change roughly tells the program to simulate 1:00
hours of system operation, using a hydraulic time step of 1:00 hours (the default).
The OldUI would have interpreted the 0 as “single period simulation.” The NewUI
probably expects a non-zero value because it is designed to support both SWMM
and EPANET computation engines. Interestingly, the simulation is still runs, but
produces an output file that the interface cannot access.
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Figure 132. Running the program, NewUI. Here is the result when the total duration in the TIMES
menu item is set to 1:00. The program runs as anticipated..
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Figure 133 is the result of turning on the computed head values at the node (and
reservoir) and the flow value for the pipe in the OldUI. The dialog box reports about
7.2 feet of head loss per 1000 feet of pipe for a total of 72 feet of head loss in the
system. The total head at the demand node is about 28 feet, so the head loss plus
remaining head at the node is equal to the 100 feet of head at the reservoir, the
anticipated result.

The computed friction factor is 0.010, which we could check against the Moody chart
if we wished to adjust the model to agree with some other known friction factor.

Figure 133. Solution dialog box for the pipe..

Using the NewUI, the object dialog box does not capture the computed information.
Instead we can generate a table of values associated with the pipe object. Figure 134
is such a table. It was created after the program run by selecting the pipe object,
then selecting the table icon. Once the table dialog box is opened, select NODES and
the table is generated.

The table reports 7.25 feet of head loss per 1000 feet of pipe for a total of 72.5 feet of
head loss in the system. The total head at the demand node is 27.5 feet, so the head
loss plus remaining head at the node is equal to the 100 feet of head at the reservoir,
the same result as in the OldUI model.

Concluding remarks for the example are the NewUI produces the same results as the
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Figure 134. Solution table for the pipe, NewUI..

OldUI for an identical problem.38 The NewUI reports results in a different fashion –
that is the computed results are now separated from the object properties, hence the
user will interrogate the results differently (using tables and charts most likely). This
different approach makes logical sense (separating input properties and computed
properties).

The NewUI REQUIRES specification of a simulation duration that is non-zero, for
single period simulations the simplest hack is to specify the simulation duration equal
to the value of the hydraulic time step, and proceed.

Users familiar with the OldUI will find the NewUI similar, but some things will be
different. An improvement is the NewUI generates reports directly to an ASCII file,
then opens that file rather than in the OldUI, having to navigate to the file and open
it independently. Another improvement is the report file extension being .TXT, so it
is automatically associated with an ASCII editor.

38An expected outcome as the computation engine is unchanged.
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9.8.3 Example 2: Flow Between Two Reservoirs

This example represents the situation where the total head is known at two points
on a pipeline, and one wishes to determine the flow rate (or specify a flow rate and
solve for a pipe diameter). Like the prior example it is contrived, but follows the
same general modeling process.

In this example we will lay out a model building protocol and follow the proto-
col.39 The example will first be presented using the OldUI then repeated using the
NewUI.

Using the Moody chart, and the energy equation, estimate the diameter
of a cast-iron pipe needed to carry 60oF water at a discharge of 10 cubic-
feet per second (cfs) between two reservoirs 2 miles apart. The elevation
difference between the water surfaces in the two reservoirs is 20 feet.

As in the prior example, we will need to specify the pipe roughness terms, then solve
by trial-and-error for the diameter required to carry the water at the desired flowrate.
Page 31 of the EPA-NET manual suggests that the roughness height for cast iron is
0.85 millifeet.

As before the steps to model the situation are:

1. Start EPA-NET

2. Set hydraulic defaults

3. Select the reservoir tool. Put two reservoirs on the map.

4. Select the node tool, put a node on the map. EPA NET needs one node!

5. Select the link (pipe) tool, connect the two reservoirs to the node. One link is
the 2 mile pipe, the other is a short large diameter pipe (negligible head loss).

6. Set the total head each reservoir.

7. Set the pipe length and roughness height in the 2 mile pipe.

8. Set the simulation duration to 1:00 (same as the hydraulic time step default
value).

9. Guess a diameter.

10. Save the input file.

11. Run the program. Query the pipe and find the computed flow. If the flow is too
large reduce the pipe diameter, if too small increase the pipe diameter. Stop
when within a few percent of the desired flow rate. Use commercially available
diameters in the trial-and-error process, so exact match is not anticipated.

39The protocol herein is changed from an earlier version to reflect the need to specify a simulation
duration.
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Figure 135 is a screen capture after the model is built and some trial-and-error di-
ameter selection. Of importance is the node and the “short pipe” that connects the
second reservoir. By changing the diameter (inches) in the dialog box and re-running
the program we can find a solution (diameter) that produces 10 cfs in the system for
the given elevation differences.

Figure 135. Solution dialog box for the pipe for Example 2.

We would conclude from this use of EPA-NET that a 22.45 inch ID cast iron pipe
would convey 10 cfs between the two reservoirs.

The same problem built entirely in the NewUI is displayed in Figure 136. In creating
the simulation I built the model exactly as done in the OldUI, and started with a
24-inch pipe as my first guess (result not shown). Then changed to the 22.45 inch
pipe to obtain the identical solution as shown in Figure 135.40

40The resulting pipe diameter is to illustrate the use of the program. The user would surely use a
commercially available pipe ID and insert those values. The important point here is that the two
interfaces produce the same kind of results.

Page 174 of 187



ICT Hydraulic Networks SUMMER 2018

As a further test of the NewUI, the file built for the problem was then imported into
the OldUI and functioned identically. Thus a conclusion of from this example is that
the .INP files from NewUI are compatible with the OldUI. The reverse direction is
also true with the caveat of explicit specification of simulation duration.

Figure 136. Solution for the pipe for Example 2 in the NewUI..

Page 175 of 187



ICT Hydraulic Networks SUMMER 2018

9.8.4 Example 3: Three-Reservoir-Problem

This example repeats another classical problem, but introduces the concept of a
basemap (image) to help draw the network. First the problem statement

Reservoirs A, B, and C are connected as shown41 in Figure 137. The water
elevations in reservoirs A, B, and C are 100 m, 80 m, and 60 m. The three
pipes connecting the reservoirs meet at junction J, with pipe AJ being 900
m long, BJ being 800 m long, and CJ being 700 m long. The diameters of
all the pipes are 850 mm. If all the pipes are ductile iron, and the water
temperature is 293oK, find the direction and magnitude of flow in each
pipe.

Figure 137. Three-Reservoir System Schematic.

Here we will present the problem worked using OldUI, then repeat the example in
the NewUI.

Here we will first convert the image into a bitmap (.bmp) file so EPA-NET can import
the background image and we can use it to help draw the network. The remainder of
the problem is reasonably simple and is an extension of the previous problem. Bear
in mind that the .BMP file is simply an image and not geo-referenced – so the example
was worked as entirely separate models.

The steps to model the situation are:

1. Convert the image into a bitmap, place the bitmap into a directory where the
model input file will be stored.

41This problem is identical to Chin Problem 2.30, Pg. 92

Page 176 of 187



ICT Hydraulic Networks SUMMER 2018

2. Start EPA-NET

3. Set defaults

4. Import the background.

5. Select the reservoir tool. Put three reservoirs on the map.

6. Select the node tool, put the node on the map.

7. Select the link (pipe) tool, connect the three reservoirs to the node.

8. Set the total head each reservoir.

9. Set the pipe length, roughness height, and diameter in each pipe.

10. Set the simulation duration to equal the hydraulic time step (1:00 – this setting
is to make the file compatible with the NewUI)

11. Save the input file.

12. Run the program.

Figure 138 is the result of the above steps. In this case the default units were changed
to LPS (liters per second). The roughness height is about 0.26 millimeters (if con-
verted from the 0.85 millifeet unit).

Figure 139 is the result of the above steps applied using the NewUI. In this example,
the image is loaded into the interface, then the network is built as an overlay. The
network most likely assumes whatever coordinate reference system (CRS) that the
image uses. The computed results are identical to those in the OldUI.

Page 177 of 187



ICT Hydraulic Networks SUMMER 2018

Figure 138. Solution for Example 3. The flowrates are in liters-per-second, divide by 1000 to obtain
cubic-meters-per-second..

Figure 139. Solution for Example 3. In this implementation in the NewUI, I did not bother to follow
the pipe paths..
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9.8.5 Example 4: A Simple Network

Expanding the examples, we will next consider a looped network. As before we will
use a prior exercise as the motivating example.

The water-supply network shown in Figure 140 has constant-head elevated
storage tanks at A and C, with inflow and outflow at B and D. The
network is on flat terrain with node elevations all equal to 50 meters42.
If all pipes are ductile iron, compute the inflows/outflows to the storage
tanks. Assume that flow in all pipes are fully turbulent.

Figure 140. Two-Tank Distribution System Schematic.

As before we will follow the modeling protocol but add demand at the nodes.

The steps to model the situation are:

1. Convert the image into a bitmap, place the bitmap into a directory where the
model input file will be stored.

2. Start EPA-NET

3. Set defaults

42This problem is similar to Chin Problem 2.31, Pg. 92
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4. Import the background.

5. Select the reservoir tool. Put two reservoirs on the map.

6. Select the node tool, put 4 nodes on the map.

7. Select the link (pipe) tool, connect the reservoirs to their nearest nodes. Connect
the nodes to each other.

8. Set the total head each reservoir.

9. Set the pipe length, roughness height, and diameter in each pipe. The pipes
that connect to the reservoirs should be set as short and large diameter, we
want negligible head loss in these pipes so that the reservoir head represents
the node heads at these locations.

10. Set the simulation duration to 1:00 hrs (same as the hydraulic time step).

11. Save the input file.

12. Run the program.

In this case the key issues are the units (liters per second) and roughness height (0.26
millimeters). Figure 141 is a screen capture of a completed model built using the
OldUI.

As in the prior example the model was entirely rebuilt using the new interface – again
because the image is not geo-referenced. The OldUI file would load and run fine, but
again an unreferenced image is not easily placed into the interface. So following the
same protocol, an entirely new model was built, and run. The results were identical
(as anticipated). Figure 142 is a screen capture of a completed model built using the
NewUI.
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Figure 141. Solution for Example 4. The flowrates are in liters-per-second, divide by 1000 to obtain
cubic-meters-per-second..

Figure 142. Solution for Example 4. The flowrates are in liters-per-second, divide by 1000 to obtain
cubic-meters-per-second. This example used the NewUI. The numerical results are identical to the
OldUI implementation..
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9.8.6 Example 5: Pumping Water Uphill

The example illustrates how to model a pump in EPA-NET. A pump is a special
“link” in EPA-NET. This link causes a negative head loss (adds head) according to a
pump curve. In addition to a pump curve there are three other ways to model added
head — these are discussed in the user manual and are left for the reader to explore
on their own.

Figure 143 is a conceptual model of a pump lifting water through a 100 mm diameter,
100 meter long, ductile iron pipe from a lower to an upper reservoir. The suction side
of the pump is a 100 mm diameter, 4-meter long ductile iron pipe. The difference in
reservoir free-surface elevations is 10 meters. The pump performance curve is given
as

hp = 15− 0.1Q2 (98)

where the added head is in meters and the flow rate is in liters per second (Lps). The
analysis goal is to estimate the flow rate in the system.

Figure 143. Example 5 conceptual model. The pipes are 100 mm ductile iron..

Page 182 of 187



ICT Hydraulic Networks SUMMER 2018

To model this situation, the engineer follows the modeling protocol already outlined,
only adding the special link.

1. Convert the image into a bitmap, place the bitmap into a directory where the
model input file will be stored.

2. Start EPA-NET

3. Set defaults (hydraulics = D-W, units = LPS)

4. Import the background.

5. Select the reservoir tool. Put two reservoirs on the map.

6. Select the node tool, put 2 nodes on the map, these represent the suction and
discharge side of the pump.

7. Select the link (pipe) tool, connect the reservoirs to their nearest nodes.

8. Select the pump tool.

9. Connect the nodes to each other using the pump link.

10. Set the total head each reservoir.

11. Set the pipe length, roughness height, and diameter in each pipe.

12. On the Data menu, select Curves. Here is where we create the pump curve.
This problem gives the curve as an equation, we will need three points to define
the curve. Shutoff (Q = 0), and simple to compute points make the most sense.

13. Set the simulation duration to 1:00 hours (same as the hydraulic time step).

14. Save the input file.

15. Run the program.

Again as in the other examples, the solution will be presented in the OldUI and the
NewUI.

Figure 144 is a screen capture of loading the background image. After the image
is loaded, we can then build the hydraulic model. The next step is to place the
reservoirs.

Figure 145 is a screen capture of the reservoirs after they have been placed. The
upper reservoir will be assigned a total head 10 meters larger than the lower reservoir
— a reasonable conceptual model is to use the lower reservoir as the datum.

Page 183 of 187



ICT Hydraulic Networks SUMMER 2018

Figure 144. Example 5 select the background drawing (BMP file).

Figure 145. Example 5 place the lower and upper reservoir.

Figure 146 is a screen capture of model just after the pump is added. The next steps
are to set the pipe lengths (not shown) and the reservoir elevations (not shown).
Finally, the engineer must specify the pump curve.
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Figure 146. Example 5 place the nodes, pipes, and the pump link..

Figure 147. Example 5 pump curve entry dialog box. Three points are entered and the curve equa-
tion is created by the program..

Figure 147 is a screen capture of the pump curve data entry dialog box. Three points
on the curve were selected and entered into the tabular entry area on the left of the
dialog box, then the curve is created by the program. The equation created by the
program is the same as that of the problem – hence we have the anticipated pump
curve.
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Next the engineer associates the pump curve with the pump as shown in Figure 148.

Figure 148. Setting the pump curve..

Upon completion of this step, the program is run to estimate the flow rate in the
system.

The complete example is presented using the NewUI in Figure

Figure 149. Example 5. Pumping from low to high reservoir. Solution using NewUI..
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9.9 Running from the Command Line
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