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ABSTRACT: Extended period simulation or dynamic analysis of water 
distribution systems helps in their proper operation by checking whether 
the flow rates are maintained at adequate pressures at all nodes and 
whether the storage properly balances the supply and distribution. A 
direct procedure is developed and illustrated in this paper for such 
dynamic analysis. The procedure can be applied to formulate Q-, Ag-, 
or //-equations and therefore dynamic analysis can be directly obtained 
by the usual linear theory, or by the Newton-Raphson or Hardy Cross 
methods of static network analysis. The available computer programs 
based on any of these methods can be used, with minor modifications, 
for carrying out dynamic analysis of water-distribution systems. 

INTRODUCTION 

A common practice of analyzing flow in water-distribution systems is to 
assume the flow to be in a steady-state condition. This is "static analysis." 
However, neither the nodal demands nor the reservoir water levels remain 
constant over a period of time. To ensure an adequate level of service to 
the consumers under varying conditions of demands and reservoir water 
levels, proper operation of the distribution system is necessary. From an 
operational point of view, it is necessary to adequately maintain the flow 
rates and pressures (residual heads) at all nodes at various times; it is also 
necessary to manage the storage to balance the supply and distribution. 
These objectives can be achieved by carrying out the analysis of the 
network over a period of 24-48 hr under varying nodal demands and 
reservoir water levels. Such an analysis of the distribution system is an 
extended period simulation or simply a "dynamic analysis." 

The necessity of dynamic analysis for water-distribution systems was 
recognized by some investigators including Shamir and Howard (1968) and 
Tart (1973). However, Rao and Bree (1977) and Rao et al. (1977), in their 
classic papers, were the first to suggest a systematic procedure for carrying 
out dynamic analysis of water-distribution systems. Even though their 
method is iterative, it is easy to understand and is directly based on static 
analysis. Their technique integrates several static solutions, each at the 
end of a preselected time interval, by considering the changes in reservoir 
water levels due to fill up and depletion, changes in pumping schedules, the 
effect of boundary elements bringing water into the network from a source 
outside the network, and the changes in nodal demands. The integration 
procedure is based on a diiferential equation for the reservoir heads as a 
function of time. This differential equation is used to update the static 
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solution at the end of the preselected time interval using an iterative 
predictor-corrector procedure that is continued until the heads predicted at 
the beginning of the iterative procedure match with those obtained at the 
end. 

A direct procedure is developed and illustrated in this paper for carrying 
out dynamic analysis of water-distribution systems. The proposed proce­
dure can be applied to formulate g-equations, AQ-equations, or in­
equations and therefore dynamic analysis can be obtained by the linear 
theory, the Newton-Raphson method, or the Hardy Cross method of 
network analysis. The available computer programs based on any of these 
static-analysis methods need minor modifications so that they can also be 
used for carrying out dynamic analysis of water-distribution systems. 

STATIC ANALYSIS 

The static analysis of pipe networks is based on the following relation­
ships. 

Pipe Head-Loss Relationship 
The Hazen-Williams, Darcy-Weisbach, and Manning head-loss relation­

ships are commonly used to express the head loss in a pipe. These 
relationships can be expressed by a general head-loss relationship. 

hLx = H,-Hj = Rx<£ ... (1) 

in which hL = head loss in pipe x, L; H:, Hj = heads at upstream node i 
and downstream node,/ of pipe x, respectively, L; Rx = resistance of pipe 
x', Qx = discharge in pipe x, L IT; and n = exponent that normally lies 
between 1.7 and 2.0. 

Eq. 1 can also be expressed as 

hLx = Hi-Hj = Rx\Qx\»~1 Qx (2) 

to avoid raising a negative value when the flow direction changes. 
Using Eq. 1, the pipe flow can be expressed as 

*-(*£*)" ' <3) 

which is also expressed as 

Qx 
\Hi-Hj\

(m~x 

Rjn 

J 
(H,-Hj) (4) 

to avoid raising a negative value when Hj < Hj. 

Node Flow Continuity Relationship 
For steady incompressible flow in a pipe network, the algebraic sum of 

the flows at a node must be zero. Thus, 

2 & + 3/ = Q. for all 7 (5) 
x connected 

t o ; 

in which q} = external flow (inflow or outflow) at node j , L3/T. 
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Loop Head-Loss Relationship 
The algebraic sum of the head losses in pipes forming a loop must be 

zero. Thus, 

£ hLx = 0, for all c . . . . (6) 
X S C 

in which c denotes circuit (loop) in the network. Eq. 6 can be generalized 
to include minor head losses, and heads supplied by pumps, if any, in the 
loops (Ormsby and Wood 1986). 

The relationships given by Eqs. 1-6 are used to formulate either the 
g-equations, A g-equations, or //-equations (Jeppson 1977). In formulating 
the g-equations, the pipe discharges (Qx) are treated as the basic un­
knowns. These equations are solved to obtain Qx values, which are 
subsequently used to obtain other unknown parameters. In formulating 
A g-equations, the pipe discharges Qx are assumed initially so that they 
satisfy the node flow continuity relationship (Eq. 5) at each node and the 
assumed values are successively corrected by applying a correction Ag for 
each loop so that the final Qx values also satisfy the loop head-loss 
relationship (Eq. 6) for each loop. The //-equations are formulated by 
considering the nodal heads H as the basic unknowns. 

The methods commonly used for solving these equations and obtain 
static analysis are: the linear-theory method (Wood and Charles 1972); the 
Newton-Raphson method (Martin and Peters (1963); and the Hardy Cross 
method (Cross 1936; Cornish 1939). The linear-theory method uses the 
g-equations after linearizing them if they are nonlinear; the Newton-
Raphson method uses either the Ag-equations or the //-equations and 
simultaneously solves them; and the Hardy Cross method uses either the 
Ag-equations or the //-equations but solves them individually after disre­
garding the effect of the adjacent loops or nodes. 

ITERATIVE PROCEDURE FOR DYNAMIC ANALYSIS 

For the dynamic analysis of a pipe network, the period of analysis is 
subdivided into several time intervals and the static solution at the end of 
an interval is linked to that at the beginning of the interval through an 
iterative integration procedure, suggested by Rao and Bree (1977) and Rao 
et al. (1977). 

A static solution is obtained for time t. This yields the reservoir flows at 
time t. Using these reservoir flows and the known reservoir water levels at 
time /, and the integrated value of the total network demand in the time 
interval At, between times t and t + At, reservoir water volumes are 
predicted for time t + At. The reservoir water elevations at time t + At are 
calculated using the capacity-elevation curves for the reservoirs. These 
predicted reservoir water elevations are used to obtain static solution at 
time t + At. Since the flow rates at the reservoirs, as determined by the 
network balance for time t + At, will differ from those used in the predictor 
calculations, corrector calculations are carried out to predict reservoir 
volumes and water elevations. The iterative procedure is repeated until the 
predicted and corrected reservoir water elevations for time t + At agree to 
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the desired degree of accuracy. Thus, the static solution for time t is linked 
to the static solution for time t + At through an iterative, predictor-
corrector integration step, taking into account the changes in reservoir 
water elevations due to fill-up and depletion, the schedule of the pump and 
valve settings and the variations in the nodal demands. The updated static 
solution for time t + At becomes input for the next time interval. 

As the solution at each time is static, any one of the network analysis 
techniques described earlier can be used. 

The iterative dynamic analysis procedure consists of the following steps: 

1. At time r, the following data are available: 
a. Reservoir water elevations Hr{t) and reservoir water volumes 

Vr(t) for all r, r e M, the set of reservoirs. 
b. Nodal demands qp) for ally, j e N, the set of demand nodes. 
c. If the network contains boundary elements such as pumps that 

input water into the network from external sources or from the 
neighboring pressure zones, then the relationship between the 
flows qb{t) and the heads and therefore water elevations with 
reference to a fixed datum, Hb{t) at the boundary elements b, b e 
B, the set of boundary elements must be known. The flows and 
water elevations at the boundary elements may be a function of 
network demand and of the water purchase contracts. 

2. Using the data in step 1, static analysis of the network is obtained for 
time /. After this solution the heads and flows at all nodes are known. 

3. Assuming the outflow rate qr{i) for reservoir r, as obtained in step 2, 
to be constant in the time interval (t, t + At), the depletion in reservoir 
water volume is obtained as 

AVr{t, t + At) = qr(t) At (7) 

4. The net outflow from all the reservoirs is computed as 

£ A F r = £ qMAt (8) 
r 6 M 

Similarly, the net flow from all the boundary elements is computed as 

£ AV„ = £ qb(t) At (9) 
b e B 

5. By plotting a curve of demand versus time for the entire region under 
consideration, the integrated total demand in the time interval (t, t + At), 
i.e., D(t, t + At) is obtained from the area under the curve for time interval 
(t, t + At). 

6. The error in water volume balance for the network is predicted as 

Ep(t, t + At) = ^ «rW to + 2 ?*W A ? + D(f>t + At) (10) 
r £ M b £ B 

in which Ep = predicted error for the entire network, L3. Assuming that 
this error is shared by the reservoirs only and not also by the boundary 
elements (Rao and Bree 1977), the error is distributed to all reservoirs in 
proportion to the withdrawal rate at each reservoir. Thus, for reservoir r, 
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erp{t, t + At) = y r t
q ^ x Ep(t> ' + A?) ( " ) 

r e M 

in which erp = predicted error for reservoir r, L3. 
7. The reservoir volume at time t + At is predicted as 

Vrp(t + At) = Vr(t) + qr(t) At + erp(t, t + At) (12) 

8. Using the known capacity-elevation relationship for reservoir r, i.e., 
Vr - fr(Hr), the predicted volume Vrp(t + At) yields the predicted water 
elevation Hrp(t + At) for reservoir r at time / + At. 

9. Using the Hrp(t + A t) (r e M), qft + At) (J e N), and the relevant data 
for the boundary elements, static analysis is performed for time t + At. 

10. The system is checked for preset switch points for controlling valves 
and pumps. If one of these is switched in the time interval (/, t + At), then 
the next step in the integration procedure is step 13; otherwise, the error in 
volume balance is recomputed using the new flow rates. Thus, 

At 
Ec(t,t + At)= ^ [<7rM + <7r(? + A?)] y 

r e M 

+ £ [qb(t) + qb(t + At)]Y + D(t,t + At) (13) 
b 6 B 

in which Ec - corrected error for the entire network, L3. This error is 
reallocated to reservoir r, in proportion to the average flow rate. Thus, 

qr(t) + qr{t + A?) 
erc(t,t + At)= ^ qM+ ^ qXt + At)xEc(t,t + At) (14) 

r £ M r E M 

11. The reservoir volumes are corrected using the corrector equation 

At 
Vrc(t + At) = Vr(t) + [qr(t) + qr(t + At)] y + erc(t, t + At) (15) 

With these corrected reservoir volumes, water elevations Hrc(t + At) are 
recomputed for all r, r e M, from the respective capacity-elevation 
relationships Vr = fr(Hr), r e M. 

12. The difference between the predicted and corrected water elevations 
is estimated for all r, r e M. If the difference is more than the permissible 
limit, the predictor-corrector integration step is repeated for the same time 
interval. If the difference is within the permissible limt for all reservoirs, 
the dynamic analysis for time interval (t, t + At) is complete. The finally 
obtained corrected values Hrc(t + At) and V,.c(t + At) are set to Hr(t + At) 
and Vr(t + At) values, respectively, for all reservoirs. These values then 
serve as the starting values for the next time interval. 

13. If there is a switch of a pump or a valve in the time interval {t, t + 
At), then the time t + A't (t < t + A't < t + At) at which the switching 
occurs is determined. The time interval is reduced from A? to A't and the 
integration procedure is carried out for two time intervals (t, t + A't), and 
(t + A't, t + At). 
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The entire procedure is cycled through the various time intervals to 
cover the entire period of analysis to complete the dynamic analysis of the 
network. 

PROPOSED DIRECT PROCEDURE 

In the iterative procedure described earlier, qr(t + At) is taken as qr{f) 
for the initial predictor-corrector integration iteration (steps 3-8) and is 
successively corrected (steps 9-12) so that the predicted Hr(t + At) and 
qr(t + A?) values agree with the corresponding corrected values. However, 
it is possible to obtain a relationship between Hr(t + At) and qr(t + At) and 
use it in the analysis so that static analysis for time t + At can be directly 
obtained from static analysis for time t, instead of adopting the predictor-
corrector iterative procedure. 

From the known capacity-elevation relationship Vr = fr(Hr) for reservoir 
r, AVr = fXHr) AHr,in which the prime denotes the first derivative. Thus, 
outflow from reservoir r in time interval (?, / 4- At) is given by 

AVr(t, t + At) =f'r[Hr{t)lHr{t + At) - Hr(t)] . . 

which on rearrangement can be expressed as 

Hr(t + At) = Hr(t) 
AVr(t, t + At) 

(16) 

(17) 

Now AVr(t, t + At) is the volume outflow from reservoir r in time 
interval (t, t + At) and is equal to the average outflow rate [qr(t) + qr{t + 
At)]/2, multiplied by the time interval At, plus the share of the error in the 
water volume balance (Eq. 15). 

From static analysis for time t, the total rate of supply to the network 
from all reservoirs and boundary elements at time t is 2 qr{t) + 2 qb{t), 
and it must be equal to the total rate of nodal demands % qfi). Similarly, 
this is true for time t + At. Thus, based on the average7rate of flow, for 
time interval (/, t + At), 

2 qAt) + J Qrit + A?) 
At 

Zqjtf + ^qjit + At) 

• + 

Af 

2 

2 <?*(')+ 2 > ( ' + A') 
A? 

T 

(18) 

However, from the network demand curve, the integrated total network 
demand and thus the total volume of water leaving the system during the 
time interval (t, t + At) is observed to be D(t, t + At) instead of [S q/j) + 
2 qp + At)]Atl2. This difference between the observed and 7estimat-
ed total network demand is distributed to the reservoirs and boundary 
elements in proportion to their withdrawal rates. If C(t, t + At) is the 
correction factor, then it is given by 

C(t, t + At) = 
D(t, t + At) 

^qjU + ^qjit+At) 
.J J 

At 

~2 

(19) 
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Therefore, the volume supply from reservoir r in time interval (f, t + At) 
is given by 

At 
AVr{t, t + At) = C{t, t + At)[qr(t) + qr(t + At)] y (20) 

Substituting the value of AVr(t, t + At) from Eq. 20 in Eq. 17 results in the 
following: 

At 
C(t, t + At)[qr(t) + qr(t + At)] y 

Hr(t+At) ^ HM+ — m m • • ' • • • ( 2 1 ) 

which on rearrangement of terms can also be expressed as 

_ A \ [Hr(t + At) - Hr{tM[Hr(t)] 
qr(t + At) = ^ qr(t) . . . (22) 

C(t, t+At)j 

The term f'r[Hr(t)] represents the cross-sectional area of reservoir r at 
elevation Hjj). For reservoirs having constant cross-sectional area 
f'r[Hr{t)] remains constant throughout the dynamic analysis; otherwise, it is 
computed for each time interval. The correction factor C(t, t + At) is 
constant for all reservoirs and boundary elements for a particular time 
interval (t, t + At). 

For a boundary element such as a pump, direct relationship between 
flow rate and head can be obtained by regression analysis. Thus, Hb(t) = 
J'U'ZiWL or qb(t) = fb[Hb(t)], are known. Therefore, for time t + At, 

Hb(t + At) =Fb[qb(t + At)] . . . . . . . (23) 

and 

qb(t + At) =fb[Hb(t + At)] (24) 

The volume supply during time interval (t, t + At) is given by 

At-
AVb{t, t + At) = C(t, t + At)[qb(t) + qb(t + At)] y (25) 

If the supply rate from a boundary element remains constant during time 
interval (/, t + At), i.e., it is qb(t) throughout the time interval (t, t + At), 
correction must not be applied to it. Therefore, while evaluating the 
correction factor given by Eq. 19, this known and fixed volume qb(t)At is 
subtracted from the numerator as well as the denominator of the right-hand 
side of Eq. 19. 

If a reservoir is filled at a constant rate qfr during time interval t, t +. At, 
Eqs. 21 and 22 would modify to, respectively, 

At 
C(t, t + At)[qr(t) + qr(t +At)] y + qfrAt 

Hr(t + At) = Hr(t) + WWJt)] (26) 

and 
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[Hr(t + At) - g r ( f ) ]x / ; [g r W]-g / r A^ 
gXr + Ar) = 2S " 9 , w 

C(/, t+At)j 
(27) 

Eqs. 21-27 are used in formulating appropriate equations for carrying 
out static analysis for time t + At, as a part of dynamic analysis for time 
interval t, t + At. 

The proposed direct procedure for carrying out dynamic analysis is 
illustrated for a simple network. 

ILLUSTRATIVE EXAMPLE 

The network shown in Fig. 1 has nodes 1 and 2 as reservoirs and nodes 
3-6 as demand nodes. The resistance constants in the Hazen-Williams 
head-loss formula hL = RxQx

li52 , x. = 1-7 are shown underlined in the 
figure. The dynamic analysis of the network is required from 0 hr to 24 hr, 
at a time interval of 4 hr. The nodal demands at different times are given in 
Table 1. The observed network demands, as obtained from the demand 
curve, between different time intervals are: 0-4 hr, 1,488 m3 ; 4-8 hr, 2,256 
m3; 8-12 hr, 2,304 m3; 12-16 hr, 2,184 m3; 16-20 hr, 1,992 m3 ; and 20-24 
hr, 1,296 m3 . Reservoirs 1 and 2 have constant cross-sectional areas of 
1,666.67 m2 and 1,250 m2 , respectively. Water levels in reservoirs 1 and 2, 
at time 0 hr, are 101.200 m and 102.000 m, respectively. Water volumes in 
reservoirs 1 and 2 at time t = 0 hr are 2,000 m3 and 5,000 m3 , respectively. 
Reservoir 1 is filled at a rate of 14 m3/min from 4 hr to 12 hr, while reservoir 
2 is filled at a rate of 10 m3/min from 12 hr to 20 hr. Both reservoirs are 
floating on the network. 

Node, 1 
, -D 

i 

FIG. 1. Illustrative Network 
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TABLE 1. Demands at Nodes of Illustrative Network 

Node 

(D 
3 
4 
5 
6 

Total network 
demand rate 

Ohr 

(2) 

1.00 
0.80 
1.00 
0.60 

3.40 

Nodal Demands, 

4hr 

(3) 

2.00 
1.60 
3.00 
1.60 

8.20 

8hr 
(4) 

3.00 
2.00 
4.00 
1.00 

10.00 

n cubic meters per minute, 

12 hr 

(5) 

3.00 
2.60 
2.00 
1.20 

8.80 

16 hr 

(6) 

2.00 
1.20 
4.00 
2.00 

9.20 

at time t 

20 hr 
(7) 

2.00 
1.60 
2.00 
1.40 

7.00 

24 hr° 
(8) 

1.00 
0.80 
1.00 
0.60 

3.40 

*Nodal demands are same as those at 0 hr. 

Dynamic Analysis for Time Interval 0-4 hr 
Static analysis of the network is carried out for t = 0 hr and the solution 

is given in column 2 of Table 2. From Eq. 19, the correction factor is 
obtained as: C(0, 4) = l,488/[(3.4 + 8.2) x 240/2] = 1.06897. 

For reservoir 1, area f[[H\(0)] = 1,666.67 m2; and for reservoir 2, area 
f2[H2(0)] = 1,250 m2 . Therefore, for reservoir 1, from Eqs. 21 and 22, 

C(0, 4)[9l(0) + «,(4)] y 

H,{A) = tf ,(0) + fHHM] ~ ~ = 1 0 1 ' 2 0 ° 

1.06897[0.5850 + <2i(4)] 
+ 1666.67 X l 2 ° ' • • - ( 2 8 f l ) 

TABLE 2. Dynamic Analysis Solution 

Item 

(D 
(2i , m3/min 
Qi , m3/min 
Qj , m3/min 
Q4 , m3/min 
Qs , m3/min 
Qf,, m3/mm 
Qy , m3/min 
qi , m3/min 
qi , m3/min 
qi , m3/min 
t?4 , m3/min 
qs , m3/min 
i76 , m3/min 
Vi , m 3 

V2.n13 

Hi , m 
H2 , m 
H, , m 
H4 , m 
Hs , m 

Hf, , m 

Ohr 

(2) 

-0.3854 
-0.1995 
-1.3854 

1.2801 
0.2800 
1.3198 
0.7196 
0.58503 

-3.9853 
1.0000 
0.8000 
1.0000 
0.6000 

2,000 
5,000 

101.200 
102.000 
101.268 
101.210 
101.172 
101.499 

4 h r 

(3) 

0.9525 
2.1981 

-1.0474 
1.3983 
1.9962 
2.6036 
1.0037 

-3.1506 
-5.0494 

2.0000 
1.6000 
3.0000 
1.6000 

1,671.7 
3,841.2 

101.003 
101.073 
100.637 
100.143 
98.704 
99.308 

Static Analysis at Time 

8 h r 

(4) 

2.5150 
3.8316 

-0.4850 
0.7649 
2.5965 
2.4034 
1.4034 

-6.3466 
-3.6534 

3.0000 
2.0000 
4.0000 
1.0000 

3,853.3 
2,762.5 

102.312 
100.210 
100.105 
99.906 
97.564 
98.688 

12 hr 

(5) 

3.2257 
4.6296. 
0.2260 

-0.4382 
1.5917 
1.6085 
0.4082 

-7.8553 
-0.9444 

3.0000 
2.6000 
2.0000 
1.2000 

5,473.3 
2,198.8 

103.284 
99.759 
99.784 
99.867 
98.921 
99.036 

16 hr 

(6) 

1.8102 
3.1115 

-0.1896 
0.9499 
2.8615 
3.1385 
1.1386 

-4.9217 
-4.2781 

2.0000 
1.2000 
4.0000 
2.0000 

3,923.3 
3,965.0 

102.354 
101.172 
101.154 
100.718 
97.914 
98.677 

20 hr 

(7) 

0.7376 
1.5682 

-1.2626 
1.3306 
1.2989 
2.1012 
0.7014 

-2.3058 
-4.6943 

2.0000 
1.6000 
2.0000 
1.4000 

3,035.0 
5,262.5 

101.821 
102.210 
101.594 
101.361 
100.712 
101.023 

24 hr 

(8) 

0.5009 
0.9069 

-0.4993 
0.5518 
0.6582 
0.9420 
0.3415 

-1.4079 
-1.9931 

1.0000 
0.8000 
1.0000 
0.6000 

2,573.3 
4,428.8 

101.544 
101.543 
101.433 
101.377 
101.192 
101.275 

aReservoir is being filled by the distribution system. 
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or 

77i(4) = 101.200 + 0.076966[<gri(4) + 0.5850] (28b) 

and 

qi(4) = 12.9928[#](4) - 101.200] - 0.5850 (29) 

Similarly, for reservoir 2, 

H2(4) = 102.000 + 0.10262[g2(4) - 3.9853] (30) 

and 

q2(4) = 9.74458[#2(4) - 102.000]•+ 3.9853 (31) 

As seen from Fig. 1, as reservoir 1 is being depleted for the assumed flow 
directions in pipes 1 and 2, 

<7i(4) = -[Gi(4) + &(4)] • (32) 

Similarly, for reservoir 2, 

<?2(4) = 63(4) - g4(4) - Q6(4) (33) 

Eq. 28^-33 are used in formulating appropriate equations for carrying 
out dynamic analysis for time interval 0-4 hr. 

Formulation of g-Equations 
From node flow continuity relationships at nodes 3-6, respectively, the 

g-equations are 

Ci(4) - S3(4) - 2.00 = 0 . (34a) 

fi2(4) + g4(4) - 65(4) - 1-60 = 0 (34b) 

6s(4) + e?(4) - 3.00 = 0 (34c) 

66(4) - G?(4) - 1.60 = 0 (34d) 

Using Eq. 1 instead of Eq. 2 for simplicity and brevity, from loop 
head-loss relationships for basic loops I and II, respectively, 

0.2[fi2(4)]" - 0.5[24(4)]" - 0.4[23(4)]" - 0.4[6i(4)]" = 0 (34e) 

0.4[e5(4)]" - 0.6[g7(4)]» - 0.3[g6(4)]» + 0.5[g4(4)]" = 0 (34/) 

Similarly, from loop head-loss relationship for a pseudoloop, i.e., loop 
III: 

0.4[ei(4)]B + 0.4[g3(4)]'! + #2(4) - H{{4) = 0 (34*) 

Substituting the values of H2(4) and Hx(4) from Eqs. 30 and 2%b, 
respectively, and the values of q2(4) and qx(4) therein from Eqs. 33 and 32, 
respectively, Eq. 34* on simplification becomes, 

0.4[gi(4)]" + 0.4[23(4)]" + 0.10262[g3(4) - g4(4) - Q6(4)] 

+ 0.076966[e](4) + g2(4)] + 0.34600 = 0 (34/i) 
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Simultaneous solution of Eqs. 34a-/and 34A by the linear theory method 
yields the solution as given in column 3 of Table 2. Note that in ordinary 
static analysis of the network at t = 4 hr, the values of H^iA) and //2(4) are 
known and therefore simultaneous solution of Eqs. 34a-g would yield the 
ordinary static analysis solution. In dynamic analysis, the values oiHx(4) 
and H2(4) are expressed in terms of the pipe flows. Therefore, for dynamic 
analysis, Eq. 34g is replaced by Eq. 34h and thus only the equation for the 
pseudoloop has changed. The total number of the equations has remained 
the same, i.e., seven as for the ordinary static analysis. 

Formulation of Ag-Equations 
Assuming the values of gi(4)-<27(4) so that they satisfy Eqs. 34a-d 

denoting these values by suffix 0, omitting 4 within parentheses for 
simplicity, and taking AQj-AQm as loop-flow corrections (clockwise 
positive) for loops I—III, respectively, Eqs. 34e-h become, respectively, 

0.2(g02 + A&)» - 0.5(go4 - Agi + A2n)" - 0.4(2o3 - A& + Aftn)" 

- 0.4(fioi - AQi + A&n)" = 0 (35a) 

0.4(2o5 + Agn)" - 0.6(2o7 - Afti)" - 0.3(g06 - A&i)" 

+ 0.5(204 - A& + Afin)" = 0 (356) 

0.4(2oi " Aft + A&n)" + 0.4(2o3 - Aft + Aft,,)" + H2(4) - #,(4) = 0 (35c) 

0.4(goi - A d + AQmT + 0.4(Q0i - Aft + A&n)" + 0.10262 

• [(2o3 - A& + Afini) - (Gw - Agi + AQn) " (2o6 - AGn)] 

+ 0.076966[(2oi - Aft + Agm) + (Q02 + AQi)] + 0.34600 = 0 . . . . (35d) 

which on simplification becomes 

0.4(201 - Aft + Aftn)" + 0.4(2o3 - Aft + A2m)" + 0.10262 

• (2o3 - 2o4 - 2o6 + A2m) + 0.076966(2oi + 2o2 + Aftn) + 0.34600 = 0 (35e) 

Solution of Eqs. 35a, 35b, and 35e, either simultaneously by the 
Newton-Raphson method or individually by the Hardy Cross method 
(retaining only Agj in Eq. 35a, AQU in Eq. 35b, and AQm in Eq. 35e), 
yields the dynamic analysis solution given in column 3 of Table 2. Note 
that in the third and fourth terms of Eq. 35e, only A<2in is present and the 
correction terms for other loops are absent. Furthermore, the solution of 
Eqs. 35a-c yields the ordinary static solution for t = 4 hr, and the number 
of equations in dynamic analysis is also three, as in ordinary static 
analysis. 

Formulation of H-Equations 
//-equations are formulated by writing node flow continuity equations 

(flows are expressed in terms of nodal heads) at all the six nodes of the 
network. Using Eq. 3 instead of Eq. 4 and omitting 4 within parentheses 
for simplicity and brevity, the //-equation for node 1 is 

- 12.9928(^1 - 101.200) + 0.5850 = 0 (36a) 
Hi-H, 

0.4 
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Similarly, for node 2, 
fH3 - H2\

 y" 

- 9.74458(il2 - 102.000) - 3.9853 = 0 

For nodes 3-6, respectively, 

H, -H 
0.4 

H\ ~~ HA 

0.2 

HA~ H5 

°-4 

H2 - H6 

0.3 

i/« 

i/« 

Mn 

l/n 

H3 - H2 

\ °-4 

(Hi-Hi 

V 0.5 

(H6 - H5 

V ° - 6 

(H6-H5 

\ln 

- 2.00 = 0 

* 4 ~ ^ 5 
0.4 1.60 = 0 

0.6 

Vn 

l/n 

1.60 = 0 

06b) 

(36c) 

(36rf) 

(36e) 

(36/) 

The solution of Eqs. 36a-/, either simultaneously by the Newton-
Raphson method or individually by the Hardy Cross method, yields the 
dynamic analysis for 0-4 hr. Note that for ordinary static analysis at t = 4 
hr, as the values of #[(4) and H2(4) are known, the static analysis is 
obtained by solution of Eqs. 36c-/, while dynamic analysis requires all the 
six equations. Thus, in dynamic analysis the number of required equations 
increases by M, the number of reservoirs. (Because of this, depending 
upon the number of reservoirs relative to the number of other nodes, the 
computer runtime for dynamic analysis by direct procedure could be more 
than that by the predictor-corrector iterative procedure.) 

Reservoir 1 is filled at the rate of 14 m3/min between 4 and 12 hr. 
Therefore, for the dynamic analysis of time intervals 4-8 hr and 8-12 hr, 

TABLE 3. Dynamic Analysis by Predictor-Corrector Iterative Procedure for Time 
Interval 0-4 hr 

Iteration 

(D 
Initial 

(steps 3-8) 
1 (steps 

9-12) 
2 (steps 

9-12) 
3 (steps 

9-12) 
4 (steps 

9-12) 
5 (steps 

9-12) 

Predicted Flow (m3/min) for 
t = 4hr 

Reservoir 1 
(2) 

+0.5850 

-4.2081 

-2.9072 

-3.2065 

-3.1376 

-3.1534 

Reservoir 2 
(3) 

-3.9853 

-3.9918 

-5.2928 

-4.9935 

-5.0624 

-5.0465 

Corrected Head (m) for 
/ = 4hr 

Reservoir 1 
(4) 

100.921 

101.021 

100.998 

101.004 

101.002 

101.003 

Reservoir 2 
(5) 

101.181 

101.048 

101.079 

101.072 

101.073 

101.073 
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Eqs. 26 and 27 are used instead of Eqs. 21 and 22, respectively, in 
formulating the Q-, AQ-, or H- equations. Similar to this is the case for 
reservoir 2 between 12 and 20 hr. 

The complete dynamic analysis solution is given in Table 2. 
The dynamic analysis is carried out, for comparison purposes, by the 

predictor-corrector iterative integration procedure for time interval 0-4 hr. 
The results are tabulated in Table 3. As seen from the table, five 
predictor-corrector iterations are necessary to obtain the results given in 
column 3 of Table 2. 

SUMMARY AND CONCLUSIONS 

A direct procedure is developed and illustrated for carrying out dynamic 
analysis of water-distribution systems. The application of the procedure 
for formulation of Q-, A.Q-, and //-equations is illustrated. In Q- and 
AQ-equations, the number of the unknowns for dynamic analysis remains 
the same as that in the static analysis, and only the Q- and Ag-equations 
for the pseudoloops change. In the formulation of//-equations, additional 
//-equations—one for each reservoir—are introduced. The proposed pro­
cedure can be used in practice by suitably modifying the available 
computer programs based on the linear-theory, Newton-Raphson, or 
Hardy Cross methods of network analysis. 

APPENDIX I. REFERENCES 

Cornish, R. J., (1939). "The analysis of flow in networks of pipes." J. Inst. Civ. 
Engrs., 13, London, England, 147-154. 

Cross, H. (1936). "Analysis of flow in networks of conduits or conductors." 
Bulletin No. 386, Engineering Experiment Station, University of Illinois, Urbana, 
111. 

Jeppson, R. W. (1977). Analysis of flow in pipe networks, Ann Arbor Science, Ann 
Arbor, Mich. 

Martin, D. W., and Peters, G. (1963). "The application of newton's method to 
network analysis by digital computer." / . Inst. Water Engrs., 17 London, 
England, 115-129. 

Ormsbee, L. E., and Wood, D. J. (1986). "Explicit pipe network calibration." J. 
Water Resour. Ping. andMgmt., ASCE, 112(2), 166-182. 

Rao, H. S., and Bree, D. W., Jr. (1977). "Extended period simulation of water 
systems—part A." / . Hydraul. Div., ASCE, 103(2), 97-108. 

Rao, H. S., Markel, L. C, and Bree, D. W., Jr. (1977). "Extended period 
simulation of water systems—part B." J. Hydraul. Div., ASCE, 103(3), 281-294. 

Shamir, U., and Howard, C. D. D. (1968). "Water distribution system analysis." J. 
Hydraul. Div., ASCE, 94(1), 219-234. 

Tart, J. S. (1973). "Value of telemetering and recording." /. Am. Water Works 
Assoc, 65(2), 123-127. 

Wood, D. J., and Charles, C. O. A. (1972). "Hydraulic network analysis using 
linear theory." J. Hydraul. Div., ASCE, 98(7), 1157-1170. 

APPENDIX II. NOTATION 

The following symbols are used in this paper: 

B = set of boundary elements; 
C = correction factor; 
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D - total network demand as obtained from demand curve; 
E = error for entire network; 
e = error at reservoir or boundary element; 

F,f = function of; 
H = head at node; 
hL = head loss in pipe; 
M = set of reservoirs; 
N = set of demand nodes; 
n = exponent of discharge in pipe head-loss formula; 
Q = discharge in pipe; 
q - flow at demand node, reservoir, or boundary element; 
R = resistance of pipe; 
t = time; 

(0 = at time t; 
(t, t + At) = between time interval t and t + At; 

V = volume of water in reservoir; 
AH = change in head; 

A; = time interval; and 
AF = change in volume of water in reservoir. 

Subscripts 
b = boundary element; 
c = circuit, corrected; 
/ = filling; 
/ = upstream node; 
j — downstream node; 
p = predicted; 
r = reservoir; and 
x = pipe. 
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