EXTENDED PERIOD SIMULATION OF WATER
SYSTEMS—DIRECT SOLUTION

By Pramod R. Bhave!

Asstract: - Extended period simulation or dynamic analysis of water
distribution systems helps in their proper operation by checking whether
the flow rates are maintained at adequate pressures at all nodes and
whether the storage properly balances the supply and distribution. A
direct procedure is developed and illustrated in this paper for such
dynamic analysis. The procedure can be applied to formulate Q-, AQ-,
or H-equations and therefore dynamic analysis can be directly obtained
by the usual linear theory, or by the Newton-Raphson or Hardy Cross
methods of static network analysis. The available computer programs
based on any of these methods can be used, with minor modifications,
for carrying out dynamic analysis of water-distribution systems.

INTRODUCTION

A common practice of analyzing flow in water-distribution systems is to
assume the flow to be in a steady-state condition. This is ‘‘static analysis.”’
However, neither the nodal demands nor the reservoir water levels remain
constant over a period of time. To ensure an adequate level of service to
the consumers under varying conditions of demands and reservoir water
levels, proper operation of the distribution system is necessary. From an
operational point of view, it is necessary to adequately maintain the flow
rates and pressures (residual heads) at all nodes at various times; it is also
necessary to manage the storage to balance the supply and distribution.
These objectives can be achieved by carrying out the analysis of the
network over a period of 24-48 hr under varying nodal demands and
reservoir water levels. Such an analysis of the distribution system is an
extended period simulation or simply a ‘‘dynamic analysis.”

The necessity of dynamic analysis for water-distribution systems was
recognized by some investigators including Shamir and Howard (1968) and
Tart (1973). However, Rao and Bree (1977) and Rao et al. (1977), in their
classic papers, were the first to suggest a systematic procedure for carrying
out dynamic analysis of water-distribution systems. Even though their
method is iterative, it is easy to understand and is directly based on static
analysis. Their technique integrates several static solutions, each at the
end of a preselected time interval, by considering the changes in reservoir
water levels due to fill up and depletion, changes in pumping schedules, the
effect of boundary elements bringing water into the network from a source
outside the network, and the changes in nodal demands. The integration
procedure is based on a differential equation for the reservoir heads as a
function of time. This differential equation is used to update the static
. (lil?rof. of Civ. Engrg., Visvesvaraya Regional Coll. of Engrg., Nagpur 440 011,

ndaia.

Note. Discussion open until March 1, 1989. To extend the closing date one
month, a written request must be filed with the ASCE Manager of Journals. The
manuscript for this paper was submitted for review and possible publication on
October 9, 1987, This paper is part of the Journal of Environmental Engineering, Vol.

114, No. 5, October, 1988. © ASCE, ISSN 0733-9372/88/0005-1146/$1.00 + $.15 per
page. Paper No. 22916.

1146



solution at the end of the preselected time interval using an iterative
predictor-corrector procedure that is continued until the heads predicted at
the beginning of the iterative procedure match with those obtained at the
end.

A direct procedure is developed and illustrated in this paper for carrying
out dynamic analysis of water-distribution systems. The proposed proce-
dure can be applied to formulate Q-equations, AQ-equations, or H-
equations and therefore dynamic analysis can be obtained by the linear
theory, the Newton-Raphson method, or the Hardy Cross method of
network analysis. The available computer programs based on any of these
static-analysis methods need minor modifications so that they can also be
used for carrying out dynamic analysis of water-distribution systems.

STaTIC ANALYSIS

The static analysis of pipe networks is. based on the following relation-
ships.

Pipe Head-Loss Relationship

The Hazen-Williams, Darcy-Weisbach, and Manning head-loss relation-
ships are commonly used to express the head loss in a pipe. These
relationships can be expressed by a general head-loss relationship.

hL=H,'—H':Rx (R T A S (1)

in which ;= head loss in plpe x, L; H H; = heads at upstream node i
and downstream node j of pipe x, respectlvely, L; R, = resistance of pipe
x; Q. = discharge in pipe x, L /T and n = exponent that normally lies
between 1.7 and 2.0.

Eq. 1 can also be expressed as

hy, =Hi—Hy=RJQ/"" 10 ...o.. .. e PR o)

to avoid raising a negative value when the flow direction changes.
Using Eq. 1, the pipe flow can be expressed as

H. — H.: I/n
Q.= (R—’> ...................................... (3)

which is also expressed as

|\ H; — H-I(‘/")"}
= {’—R{m———J (Hi—H) oo ey
pe .

to avoid raising a negative value when H; < H;.

Node Flow Continuity Relationship
For steady incompressible flow in a pipe network, the algebraic sum of
the flows at a node must be zero. Thus,

> Qctgi=0, forallj ....... S )

x connected
toj

in which g; = external flow (inflow or outflow) at node j, L3T.
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Loop Head-Loss Relationship
The algebraic sum of the head losses in pipes forming a loop must be
zero. Thus, ~ \ '

2 hr, =0, foralle ............ I EERRRERPE (6)

xX€Ec¢

in which ¢ denotes circuit (loop) in the network. Eq. 6 can be generalized
to include minor head losses, and heads supplied by pumps, if any, in the
loops (Ormsby and Wood 1986).

The relationships given by Egs. 1-6 are used to formulate either the
(Q-equations, AQ-equations, or H-equations (Jeppson 1977). In formulating
the Q-equations, the pipe discharges (Q,) are treated as the basic un-
knowns. These equations are solved to obtain Q, values, which are
subsequently used to obtain other unknown parameters. In formulating
AQ-equations, the pipe discharges Q, are assumed initially so that they
satisfy the node flow continuity relationship (Eq. 5) at each node and the
assumed values are successively corrected by applying a correction AQ for
each loop so that the final Q, values also satisfy the loop head-loss
relationship (Eq. 6) for each loop. The H-equations are formulated by
considering the nodal heads H as the basic unknowns.

The methods commonly used for solving these equations and obtain
static analysis are: the linear-theory method (Wood and Charles 1972); the
Newton-Raphson method (Martin and Peters (1963); and the Hardy Cross
method (Cross 1936; Cornish 1939). The linear-theory method uses the
(Q-equations after linearizing them if they are nonlinear; the Newton-
Raphson method uses either the AQ-equations or the H-equations and
simultaneously solves them; and the Hardy Cross method uses either the
AQ-equations or the H-equations but solves them individually after disre-
garding the effect of the adjacent loops or nodes.

ITerATIVE PROCEDURE FOR Dynamic ANALYSIS

For the dynamic analysis of a pipe network, the period of analysis is
subdivided into several time intervals and the static solution at the end of
an interval is linked to that at the beginning of the interval through an
iterative integration procedure, suggested by Rao and Bree (1977) and Rao
et al. (1977).

A static solution is obtained for time ¢. This yields the reservoir flows at
time ¢. Using these reservoir flows and the known reservoir water levels at
time ¢, and the integrated value of the total network demand in the time
interval At, between times ¢ and ¢+ + A¢, reservoir water volumes are
predicted for time ¢ + At. The reservoir water elevations at time ¢ + At are
calculated using the capacity-elevation curves for the reservoirs. These
predicted reservoir water elevations are used to obtain static solution at
time ¢ + Atr. Since the flow rates at the reservoirs, as determined by the
network balance for time ¢ + At, will differ from those used in the predictor
calculations, corrector calculations are carried out to predict reservoir
volumes and water elevations. The iterative procedure is repeated until the
predicted and corrected reservoir water elevations for time ¢ + At agree to
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the desired degree of accuracy. Thus, the static solution for time t is linked
to the static solution for time ¢ + Af through an iterative, predictor-
corrector integration step, taking into account the changes in reservoir
water elevations due to fill-up and depletion, the schedule of the pump and
valve settings and the variations in the nodal demands. The updated static
solution for time ¢ + At becomes input for the next time interval.

As the solution at each time is static, any one of the network analysis
techniques described earlier can be used.

The iterative dynamic analysis procedure consists of the following steps:

1. At time ¢, the following data are available:
a. Reservoir water elevations H,(¢f) and reservoir water volumes
V(0 for all r, r € M, the set of reservoirs.
b. Nodal demands g,(¢) for all j, j € N, the set of demand nodes.
¢. If the network contains boundary elements such as pumps that
input water into the network from external sources or from the
neighboring pressure zones,:then the relationship between the
flows g,(f) and the heads and therefore water elevations with
reference to a fixed datum, H,(r) at the boundary elements b, b e
B, the set of boundary elements must be known. The flows and
water elevations at the boundary elements may be a function of
network demand and of the water purchase contracts.
2. Using the data in step 1, static analysis of the network is obtained for
time ¢. After this solution the heads and flows at all nodes are known.
3. Assuming the outflow rate g,(¢) for reservoir r, as obtained in step 2,
to be constant in the time interval (¢, t + Af), the depletion in reservoir
water volume is obtained as

AV (t, t+AD=q ) At . e @)
4. The net outflow from all the reservoirs is computed as

SAV,= N qt) Bt . (8)
reM .

Similarly, the net flow from all the boundary eléments is computed as

AV = S GO AL e ©)

beB

5. By plotting a curve of demand versus time for the entire region under
consideration, the integrated total demand in the time interval (¢, t + Af),
i.e., D(t,t + Af)is obtained from the area under the curve for time interval
(t, t + AD.

6. The error in water volume balance for the network is predicted as

E(t, t+ At = 2 g, At + 2 Q) At +D(t, t+AH . ....... (10)
reM bEB

in which E, = predicted error for the entire network, L?. Assuming that
this error is shared by the reservoirs only-and not also by the boundary
elements (Rao and Bree 1977), the error is-distributed to all reservoirs in
proportion to the withdrawal rate at each reservoir. Thus, for reservoir r,

1149



g0
> al)

remM

e(t, t + Af) =

in which e,, = predicted error for reservoir r, L.
7. The reservoir volume at time ¢ + At is predicted as

Vit + AN =V, +qt) At +e,(t, t+AD ..o (12)

8. Using the known capacity-elevation relationship for reservoir r, i.e.,
V, = f(H,), the predicted volume V,,(tr + At) yields the predicted water
elevation H,,(t + At) for reservoir r at time ¢ + At.

9. Using the H,,(t + A f) (re M), q{t + Af) (j e N), and the relevant data
for the boundary elements, static analysis is performed for time ¢ + At.

10. The system is checked for preset switch points for controlling valves
and pumps. If one of these is switched in the time interval (¢, ¢t + Af), then
the next step in the integration procedure is step 13; otherwise, the error in
volume balance is recomputed using the new flow rates. Thus,

Edt1+80= 3 [q40) + qfr +A0) 5
reM

+ > a6 + gt + At)] %—t+ D, t+A) ........ e (13)

beEB

in which E,. = corrected error for the entire network, L. This error is
reallocated to reservoir r, in proportion to the average flow rate. Thus,

g0 + q,(t + A1
> oa+ Y qlt+An

reM reM

e lt, t+ A= XEft, t+A) ........ 14

11. The reservoir volumes are corrected using the corrector equation

V,o(t + A = V(1) + [q{t) + q,(t + AD)] %t+ eft,t+A) ..o (15)

With these corrected reservoir volumes, water elevations H, (¢t + At) are
recomputed for all r, r € M, from the respective capacity-elevation
relationships V, = f.(H,), r € M. ,

12. The difference between the predicted and corrected water elevations
is estimated for all r, r e M. If the difference is more than the permissible
limit, the predictor-corrector integration step is repeated for the same time
interval. If the difference is within the permissible limt for all reservoirs,
the dynamic analysis for time interval (¢, t + Ar) is complete. The finally
obtained corrected values H,.(r + At) and V,(t + Af) are set to H,(t + Af)
and V,(t + A7) values, respectively, for all reservoirs. These values then
serve as the starting values for the next time interval. ,

13. If there is a switch of a pump or a valve in the time interval (¢, ¢ +
Ap), then the time 7 + A’ (+ <t + A't <t + Ar) at which the switching
occurs is determined. The time interval is reduced from At to A't and the
integration procedure is carried out for two time intervals (r, t + A'f), and
@+ A't, t + Ap).
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The entire procedure is cycled through the various time intervals to
cover the entire period of analysis to complete the dynamic analysis of the
network.

Prorosep DIRECT PROCEDURE

In the iterative procedure described earlier, gt + A¢) is taken as g,(2)
for the initial predictor-corrector integration iteration (steps 3-8) and is
successively corrected (steps 9-12) so that the predicted H,(¢t + Af) and
q,(t + Ar) values agree with the corresponding corrected values. However,
it is possible to obtain a relationship between H.(t + Af) and q,(r + Ar) and
use it in the analysis so that static analysis for time ¢t + At can be directly:
obtained from static analysis for time ¢, instead of adopting the predictor-
corrector iterative procedure.

From the known capacity-elevation relationship V, = f,(H,) for reservoir
r, AV, = fi(H,) A H, , in which the prime denotes the first derivative. Thus,
outflow from reservoir r in time interval (¢, ¢+ + Ar) is given by

AV,(t, £+ AD = FLH,OLHE+ A) = HO] o (16)
which on rearrangement can be expressed as

AV (t, t + AD)

W ..........................

Now AV,(t, t + Af) is the volume outflow from reservoir r in time
interval (¢, t + At) and is equal to the average outflow rate [q,(¢) + q,(t +
ADY/2, multiplied by the time interval A, plus the share of the error in the
water volume balance (Eq. 15).

From static analysm for time ¢, the total rate of supply to the network
from all reservoirs and boundary elements at time ¢ is = g,(f) + £ gD,
and it must be equal to the total rate of nodal demands 'E g{?). Similarly,
this is true for time t + Ar. Thus, based on the average'rate of flow, for
time interval (¢, t + Ap),

H(t+A)=H{) +

A
[2 ) + 3 qt + Ar)J S+ {}; a0+ 3 gyt + AY)
r r b b

A
= [E q](t) + 2 qj(t + At):l ‘2_t ............................ ‘o (18)
i J

However, from the network demand curve, the integrated total network
demand and thus the total volume of water leaving the system during the
time interval (¢, ¢ + Af) is observed to be D(t, t + Af) instead of [E qj(t) +
Sqt + ANJA#2. This difference between the observed and estimat-
d ‘total network demand is distributed to the reservoirs and boundary
elements in proportion to their withdrawal rates. If C(¢, t + Ar) is the
correction factor, then it is given by '

Clt, t + Af) = T Dmt+A0 Q .................. (19)

J i
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Therefore, the volume supply from reservoir r in time mterval #t+ At)
is given by

AV,(t, t + Ar) = C(t, t + AD[q,(0) + q(¢t + Ap)] %’ ............... 0)

Substituting the value of AV, (¢, t + At) from Eq 20 in Eq. 17 results in the
following:

Clt, 1+ Anlad) + g/t + A %t

Hyt + Ar) = H() + O] L
which on rearrangement of terms can also be expressed as

H,(t + At — H(O1f[H(f) '
q,(t+At)=[ ( ) ()]Aft[ ]—q,(t) ............. L. (22)

Ct, t+ Ap) 5

The term f,[H,(#)] represents the cross-sectional area of reservoir r at
elevation H/(7). For reservoirs having constant cross-sectional area
f7[H,(¢)] remains constant throughout the dynamic analysis; otherwise, it is
computed for each time interval. The correction factor C(¢, t -+ Af) is
constant for all reservoirs and boundary elements for a particular time
interval (¢, t + Af). :

For a boundary element. such as a pump, direct relationship between
flow rate and head can be obtained by regression analysis. Thus, H,(f) =
F,lq, (1], or g,() = fb[H,,(t)], are known. Therefore, for time ¢ + At,

Hy(t + At) = Fylg,(t + At)] e e e e e e (23)
and ' )
G +A) =fllH(t+AD] o o e 24)

The volume supply during time interval (¢, ¢ + Af) is given by

AVy(t, t + At) = C(t, t + ADg,(D) + gt + AD)] % e 25)

If the supply rate from a boundary element remains constant during time
interval (¢, t + Ap), i.e., it is ¢,(¢) throughout the time interval (¢, t + Af),
correction must not be applied to it. Therefore, while evaluating the
correction factor given by Eq. 19, this known and fixed volume q,(H)At is
subtracted from the numerator as well as the denominator of the right-hand
side of Eq. 19.

If a reservoir is filled at a constant rate qy during time interval ¢, 1 + Af,
Eqs 21 and 22 would modify to, respectively,

Clt, 1+ AnlgAn) + g,{t + Ar)] %

mEer

+ qf,At
H(+ A)=HJ() +

and
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gt + Ar) = [Ht + Aty — H(D] % fI[HAN)] — qpist —q

At
C(t, t+ A 5

Eqs. 21-27 are used in formulating appropriate equations for carrying
out static analysis for time ¢ + At, as a part of dynamic analysis for time
interval ¢, t + At. ;

The proposed direct procedure for carrying out dynamic analysis is
illustrated for a simple network.

fLLusTRATIVE EXAMPLE

The network shown in Fig. 1 has nodes 1 and 2 as reservoirs and nodes
3-6 as demand nodes. The resistance constants in the Hazen-Williams
head-loss formula 2, = R,Q,'*?, x = 1-7 are shown underlined in the
figure. The dynamic analysis of the network is required from 0 hr to 24 hr,
at a time interval of 4 hr. The nodal demands at different times are given in
Table 1. The observed network demands, as obtained from the demand
curve, between different time intervals are: 04 hr, 1,488 m® ; 4-8 hr, 2,256
m? ; 8-12 hr, 2,304 m> ; 12-16 hr, 2,184 m®; 16-20 hr, 1,992 m* ; and 20-24
hr, 1,296 m®. Reservoirs 1 and 2 have constant cross-sectional areas of
1,666.67 m? and 1,250 m?, respectively. Water levels in reservoirs 1 and 2,
at time 0 hr, are 101.200 m and 102.000 m, respectively. Water volumes in
reservoirs 1 and 2 at time ¢ = 0 hr are 2,000 m> and 5,000 m?, respectively.
Reservoir 1 is filled at a rate of 14 m3/min from 4 hr to 12 hr, while reservoir
2 is filled at a rate of 10 m*/min from 12 hr to 20 hr. Both reservoirs are
floating on the network.

FIG. 1. lllusirative Network
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TABLE 1. Demands at Nodes of lllustrative Network

Nodal Demands, in cubic meters per minute, at time ¢

Node 0hr 4 hr 8 hr 12hr 16 hr 20 hr 24 hr?

(1) 2 ®) (4) () (6) @) (8)
3 1,00 2.00 3.00 3.00 2.00 2.00 1.00
4 0.80 1.60 2.00 2.60 1.20 1.60 0.80
5 1.00 3.00 4.00 ©2.00 4.00 2.00 1.00
6 0.60 1.60 1.00 1.20 2.00 1.40 0.60

Total network .

demand rate 3.40 8.20 10.00 8.80 9.20 7.00 3,40

®Nodal demands are same as those at 0 hr.

Dynamic Analysis for Time Interval 0—4 hr

Static analysis of the network is carried out for ¢ = 0 hr and the solution
is given in column 2 of Table 2. From Eq. 19, the correction factor is
obtained as: C(0, 4) = 1,488/[(3.4 + 8.2) X 240/2] = 1.06897.

For reservoir 1, area f{[H,(0)] = 1,666.67 m? ; and for reservoir 2, area
AIH(0)] = 1,250 m?. Therefore, for reservoir 1, from Egs. 21 and 22,

At
C(0, Hlai(0) + 71 5

JilH:(0)]

1.06897[0.5850 + g4(4)]
1666.67

Hy(4) = Hy(0) + = 101.200

X120 ot L (280)

TABLE 2. Dynamic Analysis Solution

Static Analysis at Time

ltem 0hr 4 br 8 hr 12 hr 16 hr 20 hr 24 hr

(1) (2) (3) (4) (6) (6) @) (8)
[023N m?/min —(.3854 0.9525 2.5150 3.2257 1.8102 0.7376 0.5009
(738 m?/min —0.1995 2.1981 3.8316 4.6296. 3.1115 1.5682 0.9069
o5, m>*/min ~1.3854 —1.0474 —0.4850 0.2260 —0.1896 ~1.2626 —0.4993
04, m*/min 1.2801 1.3983 0.7649 —0.4382 0.9499 1.3306 0.5518
Qs , m>/min 0.2800 1.9962 2.5965 1.5917 2.8615 1.2989 0.6582
Qs » m*/min 13198 2.6036 2.4034 1.6085 3.1385 2.1012 0.9420
Q7. m’/min 0.7196 1.0037 1.4034 0.4082 1.1386 0.7014 0.3415
qi . m*/min 0.5850% —3.1506 ~6.3466 —17.8553 ~4.9217 -2.3058 -1.4079
qz m*/min ~3.9853 ~5.0494 —3.6534 —0.9444 —4,2781 —4,6943 —1.9931
g3 , m*/min 1.0000 2.0000 3.0000 3.0000 2.0000 2.0000 1.0000
g4 , m/min 0.8000 1.6000 2,0000 2.6000 1.2000 1.6000 0.8000
gs , m*/min 1.0000 3.0000 4,0000 2.0000 4,0000 2.0000 1.0000
gg , m>/min 0.6000 1.6000 1.0000 1.2000 2.0000 1.4000 0.6000
Vi, m? 2,000 1,671.7 3,853.3 5,473.3 3,923.3 3,035.0 2,573.3
Vi, m’ . 15,000 3,841.2 2,762.5 2,198.8 3,965.0 5,262.5 4,428.8
Hy,m 101.200 101.003 102.312 103.284 102.354 101.821 101.544
Hy, m 102.000 101.073 100.210 99.759 101.172 102.210 101.543
Hy,m 101.268 100.637 100.105 99.784 101.154 101.594 101.433
Hy,m 101.210 100.143 99:906 99.867 100.718 101.361 101.377
Hs,m 101.172 98.704 97.564 98.921 97.914 100,712 101.192
Hg,m 101.499 99.308 98.688 99.036 98.677 101.023 101.275

"Reservoir is being filled by the distribution system.
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or

H(4) = 101.200 + 0.076966[q1(4) + 0.5850] . ................. (28b)
and ‘

qi(4) = 12.9928[H;(4) — 101.2001—0.5850 . ................... (29)
Similarly, for reservoir 2, | ‘

H,(4) = 102,000 + 0.10262[q»(4) —3.9853] .. ........ ... v, (30)
and ‘

qr(4) = 9.74458[H,(4) — 102.000]+3.9853 . . ... .o, 31

As seen from Fig. 1, as reservoir 1 is being depleted for the assumed flow
directions in pipes 1 and 2, ‘

qid) = =[Qi @)+ @] .o e (32)
Similarly, for reservoir 2,
GA)=034) — 044 = O6d) . o oo (33)

Eq. 28b-33 are used in formulating appropriate equations for carrying
out dynamic analysis for time interval 0—4 hr.

Formulation of Q-Equations .
From node flow continuity relationships at nodes 3-6, respectively, the
Q-equations are

0@ — O3 4) =200 =0 ..ot (34a)
)4 + Qud) — Os(4) = 1.60=0 . ..o \veai (34b)
Osd) + 08 —3.00=0 ..o, e (34c)
Ocd) = Qs = 160 =0 . .o e et (34d)

Using Eq. 1 instead of Eq. 2 for simplicity and brevity, from loop
head-loss relationships for basic loops I and II, respectively,

0.2[Qo DT — 0.5[Q(4)]" — 0.4[0;()T" — 0.4[QsA)]"=0 ......... (34e)
0.4[05()]" — 0.6[Q:(4))" — 0.3[Qe(4)]" + 0.5[Q(H)' =0 ......... (341)

Similarly, from loop head-loss relationship for a pseudoloop, i.e., loop
I -

040D+ 0.4[0s D' + Hy(d) —H{(4) =0 ......... .. vt (34g)

Substituting the values of H,(4) and H,(4) from Egs. 30 and 285,
respectively, and the values of g,(4) and g,(4) therein from Eqgs. 33 and 32,
respectively, Eq. 34g on simplification becomes,

0.4[Q(4)]" + 0.4[05(4)]" + 0.10262[ Q3(4) — 04(4) — Q6s(4)]
+0.076966[0,(4) + Oy + 034600 =0 .. .....ovriiiin ... (34h)
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Simultaneous solution of Eqs. 34a—f and 344 by the linear theory method
yields the solution as given in column 3 of Table 2. Note that in ordinary
static analysis of the network at 1 = 4 hr, the values of H,(4) and H,(4) are
known and therefore simultaneous solution of Eqs. 34a—g would yield the
ordinary static analysis solution. In dynamic analysis, the values of H,(4)
and H,(4) are expressed in terms of the pipe flows. Therefore, for dynamic
analysis, Eq. 34g is replaced by Eq. 34/ and thus only the equation for the
pseudoloop has changed. The total number of the equations has remained
the same, i.e., seven as for the ordinary static analysis.

Formulation of AQ-Equations

Assuming the values of Q;(4)-0,(4) so that they satisfy Eqgs. 34a-d
denoting these values by suffix 0, omitting 4 within parentheses for
simplicity, and taking AQ—AQ;; as loop-flow corrections (clockwise
positive) for loops I-III, respectively, Egs. 34e—h become, respectively,

0.2(Qoz + AQD" — 0.5(Qps — AQ; + AQ)" — 0.4(Qo3 — AQ; + AQm)"

—04(Q0 — AT +AQM) " =0 .o o oo e (35a)
0.4(Qos + AQn)" — 0.6(Qp7 — AQn)" — 0.3(Qos — AQW)"

F 05001 — AL+ AOW =0 oo e e ee e (35h)
0.4(Qp; — AQy + AQu)" + 0.4(Qpz — AQy + AQm)" + Hy(4) — Hi(4) =0 ........ (35¢)

0.4(Qo1 — AQ1 + AQ)" + 0.4(Qp3 — AQ; + AQyy)" + 0.10262

[(Qos — A1 + AQu) — (Qos — AQ: + AQw) — (Qos — AQ)]
+0.076966[(Qy; — AQ; + AQm) + (Qoz + AQD] + 0.34600 =0 . ... (35d)
which on simplification becomes

0.4(0o; — AQ; + AQmD" + 0.4(Qp; — AQy + AQq)" + 0.10262

* (Qo3 =~ Qos — Qo + AQmp + 0.076966(Qy; + Qo2 + AQqp +0.34600=0....... (35e)

Solution of Eqs. 35a, 35b, and 35e, either simultaneously by the
Newton-Raphson method or individually by the Hardy Cross method
(retaining only AQ; in Eq. 354, AQ); in Eq. 35b, and AQy; in Eq. 35¢),
yields the dynamic analysis solution given in column 3 of Table 2. Note
that in the third and fourth terms of Eq. 35¢, only AQyy; is present and the
correction terms for other loops are absent. Furthermore, the solution of
Eqgs. 35a—c yields the ordinary static solution for ¢ = 4 hr, and the number
of equations in dynamic analysis is also three, as in ordinary static
analysis.

Formulation of H-Equations

H-equations are formulated by writing node flow continuity equations
(flows are expressed in terms of nodal heads) at all the six nodes of the
network. Using Eq. 3 instead of Eq. 4 and omitting 4 within parentheses
for simplicity and brevity, the H-equation for node 1 is

H, — H. 1/n H, - H Un
- < ‘04 3) - ( '0 > 8) — 12.9928(H, — 101.200) + 0.5850 =0 ... . ... (36a)
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Similarly, for node 2,

H3 _ HZ\ 1/n B H2 _ 114 1/n B Hz — 116 /n
0.4 ) 0.5 0.3

—~9.74458(H, — 102.000) —3.9853 =0 .. ...... ... (36b)
For nodes 3-6, respectively,
Hl _ H3 1/n H3 _ Hz 1/n -
04 — 04 —200=0........ ... .. ... (36¢)
Hl - H4 1/n Hz _ H4 i/n H4 . HS 1/n 3
( 03 ) - 03 —~ 04 ~1.60=0........ (36d)
H,— H 1/n H. — H. 1/n :
( “04 5> +< 606 5) —300=0 .0t (36¢)
H__H 1/n H'_Hll/n
< 53 6) —< X 5) —1.60=0......... PETTTR G6f)

" The solution of Eqs. 36a—f, either simultaneously by the Newton-
Raphson method or individually by the Hardy Cross method, yields the
dynamic analysis for 0—4 hr. Note that for ordinary static analysis at t = 4
hr, as the values of H(4) and H,(4) are known, the static analysis is
obtained by solution of Egs. 36¢~f, while dynamic analysis requires all the
six equations. Thus, in dynamic analysis the number of required equations
increases by M, the number of reservoirs. (Because of this, depending
upon the number of reservoirs relative to the number of other nodes, the
computer runtime for dynamic analysis by direct procedure could be more
than that by the predictor-corrector iterative procedure.)

Reservoir 1 is filled at the rate of 14 m*/min between 4 and 12 hr.
Therefore, for the dynamic analysis of time intervals 4-8 hr and 8-12 hr,

TABLE 3. Dynamic Analysis by Predictor-Corrector Iterative Procedure for Time
Interval 0-4 hr :

Predicted Flow (m®/min) for Corrected Head (m) for
t =4hr t=4dhr

lteration Reservoir 1 Reservoir 2 Reservoir 1 Reservoir 2

1 - (2) (3) (4) (5)

Initial

(steps 3-8) +0.5850 —3.9853 100.921 101.181
1 (steps .

9-12) —4.2081 —3.9918 101.021 101.048
2 (steps '

9-12) -2.9072 —5.2928 100.998 101.079
3 (steps

9-12) —3.2065 —4.9935 101.004 101.072
4 (steps :

9-12) -3.1376 —5.0624 101.002 101.073
5 (steps

9-12) ~3.1534 -5.0465 101.003 101.073
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Egs. 26 and 27 are used instead of Egs. 21 and 22, respectively, in
formulating the Q-, AQ-, or H- equations. Similar to this is the case for
reservoir 2 between 12 and 20 hr.

The complete dynamic analysis solution is given in Table 2.

The dynamic analysis is carried out, for comparison purposes, by the
predictor-corrector iterative integration procedure for time interval 0—4 hr.
The results are tabulated in Table 3. As seen from the table, five
predictor-corrector iterations are necessary to obtain the results given in
column 3 of Table 2. ;

SumMmARY AND CONCLUSIONS

A direct procedure is developed and illustrated for carrying out dynamic
analysis of water-distribution systems. The application of the procedure
for formulation of Q-, AQ-, and H-equations is illustrated. In Q- and
AQ-equations, the number of the unknowns for dynamic analysis remains
the same as that in the static analysis, and only the Q- and AQ-equations
for the pseudoloops change. In the formulation of H-equations, additional
H-equations—one for each reservoir—are introduced. The proposed pro-
cedure can be used in practice by suitably modifying the available
computer programs based on the linear-theory, Newton-Raphson, or
Hardy Cross methods of network analysis, ’
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Appenpix ll. NoTaTION
The following symbols are used in this paper:

B
C

I

set of boundary elements;
correction factor;
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AH

At

AV

Subscripts

R T

{1 | O R VI

il

i

il

total network demand as obtained from demand curve;
error for entire network;

error at reservoir or boundary element;

function of;

head at node;

head loss in pipe;

set of reservoirs;

set of demand nodes;

exponent of discharge in pipe head-loss formula;
discharge in pipe;

flow at demand node, reservoir, or boundary element
resistance of pipe;

time,

at time t;

between time interval 7 and ¢ + Ar;

volume of water in reservoir;

change in head;

time interval; and

change in volume of water in reservoir.

boundary element;
circuit, corrected;
filling;

upstream node;
downstream node;
predicted;
reservoir; and
pipe.
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